Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chloroplasts play a central role in plant defence and are targeted by pathogen effectors

Abstract

Microbe associated molecular pattern (MAMP) receptors in plants recognize MAMPs and activate basal defences; however a complete understanding of the molecular and physiological mechanisms conferring immunity remains elusive. Pathogens suppress active defence in plants through the combined action of effector proteins. Here we show that the chloroplast is a key component of early immune responses. MAMP perception triggers the rapid, large-scale suppression of nuclear encoded chloroplast-targeted genes (NECGs). Virulent Pseudomonas syringae effectors reprogramme NECG expression in Arabidopsis, target the chloroplast and inhibit photosynthetic CO2 assimilation through disruption of photosystem II. This activity prevents a chloroplastic reactive oxygen burst. These physiological changes precede bacterial multiplication and coincide with pathogen-induced abscisic acid (ABA) accumulation. MAMP pretreatment protects chloroplasts from effector manipulation, whereas application of ABA or the inhibitor of photosynthetic electron transport, DCMU, abolishes the MAMP-induced chloroplastic reactive oxygen burst, and enhances growth of a P. syringae hrpA mutant that fails to secrete effectors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear encoded chloroplast transcript dynamics in defence and disease responses to Pseudomonas syringae pv. tomato DC3000.
Figure 2: Pseudomonas syringae DC3000 rapidly inhibits photosynthesis in Arabidopsis thaliana.
Figure 3: DC3000 effectors suppress Fv/Fm, in an ABA dependent manner.
Figure 4: Chloroplast localized HopN1 and HopI1 do not modify Fv/Fm.
Figure 5: Effector suppression of a photosynthesis-derived reactive species burst is necessary to overcome basal defences and promote pathogen growth.

References

  1. Bohm, H., Albert, I., Fan, L., Reinhard, A. & Nurnberger, T. Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 20C, 47–54 (2014).

    Article  Google Scholar 

  2. Macho, A. P. & Zipfel, C. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54, 263–272 (2014).

    Article  CAS  Google Scholar 

  3. Shapiguzov, A., Vainonen, J. P., Wrzaczek, M. & Kangasjarvi, J. ROS-talk – how the apoplast, the chloroplast, and the nucleus get the message through. Front. Plant Sci. 3, 292 (2012).

    Article  CAS  Google Scholar 

  4. Galvez-Valdivieso, G. & Mullineaux, P. M. The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol. Planta 138, 430–439 (2010).

    Article  CAS  Google Scholar 

  5. Robert-Seilaniantz, A., Grant, M. & Jones, J. D. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49, 317–343 (2011).

    Article  CAS  Google Scholar 

  6. Trotta, A., Rahikainen, M., Konert, G., Finazzi, G. & Kangasjarvi, S. Signalling crosstalk in light stress and immune reactions in plants. Phil. Trans. R. Soc. B 369, 20130235 (2014).

    Article  Google Scholar 

  7. Cunnac, S., Lindeberg, M. & Collmer, A. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr. Opin. Microbiol. 12, 53–60 (2009).

    Article  CAS  Google Scholar 

  8. Truman, W., Zabala, M. D. T. & Grant, M. Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defense responses during pathogenesis and resistance. Plant J. 46, 14–33 (2006).

    Article  CAS  Google Scholar 

  9. Smyth, G. K., Michaud, J. & Scott, H. S. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21, 2067–2075 (2005).

    Article  CAS  Google Scholar 

  10. Zipfel, C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767 (2004).

    Article  CAS  Google Scholar 

  11. Windram, O. et al. Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 24, 3530–3557 (2012).

    Article  CAS  Google Scholar 

  12. Grant, M. et al. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 23, 441–450 (2000).

    Article  CAS  Google Scholar 

  13. Baker, N. R. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008).

    Article  CAS  Google Scholar 

  14. Muller, P., Li, X. P. & Niyogi, K. K. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125, 1558–1566 (2001).

    Article  CAS  Google Scholar 

  15. Zheng, X. Y. et al. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11, 587–596 (2012).

    Article  CAS  Google Scholar 

  16. Gohre, V., Jones, A. M., Sklenar, J., Robatzek, S. & Weber, A. P. Molecular crosstalk between PAMP-triggered immunity and photosynthesis. Mol. Plant Microbe Interact. 25, 1083–1092 (2012).

    Article  Google Scholar 

  17. de Torres Zabala, M., Bennett, M. H., Truman, W. H. & Grant, M. R. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. Plant J. 59, 375–386 (2009).

    Article  Google Scholar 

  18. Debener, T., Lehnackers, H., Arnold, M. & Dangl, J. L. Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. Plant J. 1, 289–302 (1991).

    Article  Google Scholar 

  19. Taylor, J. D., Conway, J., Roberts, S. J., Astley, D. & Vicente, J. G. Sources and origin of resistance to Xanthomonas campestris pv. campestris in brassica genomes. Phytopathology 92, 105–111 (2002).

    Article  CAS  Google Scholar 

  20. Kvitko, B. H. et al. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathogens 5, e1000388 (2009).

    Article  Google Scholar 

  21. Cunnac, S. et al. Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae. Proc. Natl Acad. Sci. USA 108, 2975–2980 (2011).

    Article  CAS  Google Scholar 

  22. Gomez-Gomez, L. & Boller, T. Flagellin perception: a paradigm for innate immunity. Trends Plant Sci. 7, 251–256 (2002).

    Article  CAS  Google Scholar 

  23. Kunze, G. et al. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16, 3496–3507 (2004).

    Article  CAS  Google Scholar 

  24. Wiermer, M., Feys, B. J. & Parker, J. E. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 8, 383–389 (2005).

    Article  CAS  Google Scholar 

  25. de Torres-Zabala, M. et al. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J. 26, 1434–1443 (2007).

    Article  CAS  Google Scholar 

  26. Rubio, S. et al. Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol. 150, 1345–1355 (2009).

    Article  CAS  Google Scholar 

  27. Asai, T. et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977–983 (2002).

    Article  CAS  Google Scholar 

  28. Figueiredo, J. F. et al. Agrobacterium-mediated transient expression in citrus leaves: a rapid tool for gene expression and functional gene assay. Plant Cell Rep. 30, 1339–1345 (2011).

    Article  CAS  Google Scholar 

  29. Jelenska, J. et al. A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr. Biol. 17, 499–508 (2007).

    Article  CAS  Google Scholar 

  30. Li, G. et al. Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77, 310–321 (2014).

    Article  CAS  Google Scholar 

  31. Rodriguez-Herva, J. J. et al. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cell. Microbiol. 14, 669–681 (2012).

    Article  CAS  Google Scholar 

  32. Jelenska, J., van Hal, J. A. & Greenberg, J. T. Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc. Natl Acad. Sci. USA 107, 13177–13182 (2010).

    Article  CAS  Google Scholar 

  33. Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols 2, 953–971 (2007).

    Article  CAS  Google Scholar 

  34. Mukhtar, M. S. et al. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333, 596–601 (2011).

    Article  CAS  Google Scholar 

  35. Waegemann, K. & Soll, J. Characterization of the protein import apparatus in isolated outer envelopes of chloroplasts. Plant J. 1, 149–158 (1991).

    Article  Google Scholar 

  36. Macho, A. P. et al. Genetic analysis of the individual contribution to virulence of the type III effector inventory of Pseudomonas syringae pv. phaseolicola. PLoS ONE 7, e35871 (2012).

    Article  CAS  Google Scholar 

  37. Fu, Z. Q. et al. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447, 284–288 (2007).

    Article  CAS  Google Scholar 

  38. Baba, K., Nakano, T., Yamagishi, K. & Yoshida, S. Involvement of a nuclear-encoded basic helix-loop-helix protein in transcription of the light-responsive promoter of psbD. Plant Physiol. 125, 595–603 (2001).

    Article  CAS  Google Scholar 

  39. Shi, L. X. & Schroder, W. P. The low molecular mass subunits of the photosynthetic supracomplex, photosystem II. Biochim. Biophys. Acta 1608, 75–96 (2004).

    Article  CAS  Google Scholar 

  40. Ikeuchi, M. et al. Cloning of the psbK gene from Synechocystis sp. PCC 6803 and characterization of photosystem II in mutants lacking PSII-K. J. Biol. Chem. 266, 11111–11115 (1991).

    CAS  PubMed  Google Scholar 

  41. Wessling, R. et al. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16, 364–375 (2014).

    Article  CAS  Google Scholar 

  42. Torres, M. A., Jones, J. D. & Dangl, J. L. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141, 373–378 (2006).

    Article  CAS  Google Scholar 

  43. Mitchell, K., Brown, I., Knox, P. & Mansfield, J. The role of cell wall-based defences in the early restriction of non-pathogenic hrp mutant bacteria in Arabidopsis. Phytochemistry 112, 139–150 (2014).

    Article  Google Scholar 

  44. Hempel, S. L., Buettner, G. R., O'Malley, Y. Q., Wessels, D. A. & Flaherty, D. M. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Rad, Biol. Med. 27, 146–159 (1999).

    Article  CAS  Google Scholar 

  45. Halliwell, B. & Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Brit. J. Pharmacol. 142, 231–255 (2004).

    Article  CAS  Google Scholar 

  46. Mubarakshina, M. M. et al. Production and diffusion of chloroplastic H2O2 and its implication to signalling. J. Exp. Bot. 61, 3577–3587 (2010).

    Article  CAS  Google Scholar 

  47. Flors, C. et al. Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green. J. Exp. Bot. 57, 1725–1734 (2006).

    Article  CAS  Google Scholar 

  48. Krieger-Liszkay, A. Singlet oxygen production in photosynthesis. J. Exp. Botany 56, 337–346 (2005).

    Article  CAS  Google Scholar 

  49. Lee, K. P., Kim, C., Landgraf, F. & Apel, K. EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 104, 10270–10275 (2007).

    Article  CAS  Google Scholar 

  50. Larkin, R. M. Influence of plastids on light signalling and development. Phil. Trans. R. Soc. B 369, 20130232 (2014).

    Article  Google Scholar 

  51. Allemeersch, J. et al. Benchmarking the CATMA microarray. A novel tool for Arabidopsis transcriptome analysis. Plant Physiol. 137, 588–601 (2005).

    Article  CAS  Google Scholar 

  52. Breeze, E. et al. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23, 873–894 (2011).

    Article  CAS  Google Scholar 

  53. Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. Fitting photosynthetic carbon dioxide response curves for C(3) leaves. Plant Cell Environ. 30, 1035–1040 (2007).

    Article  CAS  Google Scholar 

  54. Littlejohn, G. R., Gouveia, J. D., Edner, C., Smirnoff, N. & Love, J. Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll. New Phytol. 186, 1018–1025 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by BBSRC grants BB/E010334/1 to M.G. and BB/F005903/1 to M.G. and N.S. M.T. and D.L. thank R. Bock and the Max Planck Society (MPG) for their support. We are indebted to members of the PRESTA consortium for their efforts in generating the microarray data. We thank J. Greenberg for the Pma4326 hopI1 strain and E. Lopez-Solanilla for the HopN1 derivatives. We are indebted to K. Polanski for generating the images for Fig. 1b and Alan Collmer for Pf55, CUCPB6032 and ΔfliC strains.

Author information

Authors and Affiliations

Authors

Contributions

M.G., M.d.T., J.M., M.T. and N.S. conceived the experiments, M.T., D.L., L.D. and B.B. undertook the chloroplast localization and effector predictions, S.J., T.B. and D.S. the bioinformatics, T.L., N.S. the photosynthesis experiments, G.L. the microscopy and M.d.T. and W.T. contributed to the remainder of the experimental work. M.d.T., M.G., N.S., J.M. and M.T. wrote the manuscript.

Corresponding author

Correspondence to Murray Grant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Torres Zabala, M., Littlejohn, G., Jayaraman, S. et al. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nature Plants 1, 15074 (2015). https://doi.org/10.1038/nplants.2015.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing