Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis

Subjects

An Author Correction to this article was published on 05 November 2020

This article has been updated

Abstract

The gibberellin (GA) phytohormones play important roles in plant growth and development, promoting seed germination, elongation growth and reproductive development1. Over the years, substantial progress has been made in understanding the regulation of GA signalling and metabolism, which ensures appropriate levels of GAs for growth and development2. Moreover, an additional level of regulation may reside in the transport of GAs from production sites to recipient tissues that require GAs for growth. Although there is considerable evidence suggesting the existence of short- and long-distance movement of GAs in plants38, the nature and the biological properties of this transport are not yet understood. Here, we combine biochemical and conventional micrografting experiments in Arabidopsis thaliana to show that the GA precursor GA12, although biologically inactive by itself, is the major mobile GA signal over long distances. Quantitative analysis of endogenous GAs in xylem and phloem exudates further indicates that GA12 moves through the plant vascular system. Finally, we demonstrate that GA12 is functional in recipient tissues, supporting growth via the activation of the GA signalling cascade. Collectively, these results reveal the existence of long-range transport of endogenous GA12 in plants that may have implications for the control of developmental phase transitions and the adaptation to adverse environments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shoot growth phenotypes of GA-deficient scions grafted onto wild-type rootstocks.
Figure 2: Root growth phenotypes of GA-deficient rootstocks grafted with wild-type scions.
Figure 3: Long-range GA12 signal activates GA signalling in distant organs.

Similar content being viewed by others

Change history

  • 05 November 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Pimenta Lange, M. J. & Lange, T. Gibberellin biosynthesis and the regulation of plant development. Plant Biol. 90, 281–290 (2006).

    Article  Google Scholar 

  2. Hedden, P. & Thomas, S. G. Gibberellin biosynthesis and its regulation. Biochem. J. 444, 11–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Katsumi, M., Foard, D. E. & Phinney, B. O. Evidence for the translocation of gibberellin A3 and gibberellin-like substances in grafts between normal, dwarf1 and dwarf5 seedlings of Zea mays L. Plant Cell Physiol. 24, 379–388 (1983).

    CAS  Google Scholar 

  4. Proebsting, W. M., Hedden, P., Lewis, M. J., Croker, S. J. & Proebsting, L. N. Gibberellin concentration and transport in genetic lines of pea. Plant Physiol. 100, 1354–1360 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eriksson, S., Böhlenius, H., Moritz, T. & Nilsson, O. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18, 2172–2181 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ragni, L. et al. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23, 1322–1336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shani, E. et al. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc. Natl Acad. Sci. USA 110, 4834–4839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dayan, J. et al. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell 24, 66–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Santner, A., Calderon-Villalobos, L. I. A. & Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nature Chem. Biol. 5, 301–307 (2009).

    Article  CAS  Google Scholar 

  10. Sun, T. P. & Kamiya, Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6, 1509–1518 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Regnault, T., Davière, J. M., Heintz, D., Lange, T. & Achard, P. The gibberellin biosynthetic genes AtKAO1 and AtKAO2 have overlapping roles throughout Arabidopsis development. Plant J. 80, 462–474 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Plackett, A. R. G. et al. Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1, -2, and -3 are the dominant paralogs. Plant Cell 24, 941–960 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mitchum, M. G. et al. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J. 45, 804–818 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Fu, X. D. & Harberd, N. P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Ubeda-Tomas, S. et al. Root growth in Arabidopsis requires gibberellin/DELLA signaling in the endodermis. Nature Cell Biol. 10, 625–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Hoad, G. V. Transport of hormones in the phloem of higher plants. Plant Growth Regul. 16, 173–182 (1995).

    Article  CAS  Google Scholar 

  17. Hoad, G. V. & Bowen, M. R. Evidence for gibberellin-like substances in phloem exudate of higher plants. Planta 82, 22–32 (1968).

    Article  CAS  PubMed  Google Scholar 

  18. Lavender, D. P., Sweet, G. B., Zaerr, J. B. & Hermann, R. K. Spring shoot growth in Douglas-fir may be initiated by gibberellins exported from the roots. Science 182, 838–839 (1973).

    Article  CAS  PubMed  Google Scholar 

  19. Israelsson, M., Sundberg, B. & Moritz, T. Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J. 44, 494–504 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Robert, H. S. & Friml, J. Auxin and other signals on the move in plants. Nature Chem. Biol. 5, 325–332 (2009).

    Article  CAS  Google Scholar 

  21. Davière, J. M. & Achard, P. Gibberellin signaling in plants. Development 140, 1147–1151 (2013).

    Article  PubMed  Google Scholar 

  22. Silverstone, A. L. et al. Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13, 1555–1566 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanno, Y. et al. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc. Natl Acad. Sci. USA 103, 9653–9658 (2012).

    Article  Google Scholar 

  24. Saito, H. et al. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nature Commun. 6, 6095 (2015).

    Article  Google Scholar 

  25. Hu, J. et al. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20, 320–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Otsuka, M. et al. Emission of ent-kaurene, a diterpenoid hydrocarbon precursor for gibberellins, into the headspace from plants. Plant Cell Physiol. 45, 1129–1138 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka, J. et al. Antheridiogen determines sex in ferns via a spatiotemporally split gibberellin synthesis pathway. Science 343, 463–473 (2014).

    Google Scholar 

  28. Malladi, A. & Burns, J. K. Communication by plant growth regulators in roots and shoots of horticultural crops. Hortscience 42, 1113–1117 (2007).

    Article  CAS  Google Scholar 

  29. Mouchel, C. F. & Leyser, O. Novel phytohormones involved in long-range signaling. Curr. Biol. Plant Biol. 10, 473–476 (2007).

    Article  CAS  Google Scholar 

  30. King, R. W., Moritz, T., Evans, L. T., Junttila, O. & Herlt, A. J. Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol. 127, 624–632 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tyler, S. et al. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol. 135, 1008–1019 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turbull, C. G. N., Booker, J. P. & Leyser, O. Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J. 32, 255–262 (2002).

    Article  Google Scholar 

  33. Beneteau, J. et al. Binding properties of the N-acetylglucosamine and high-mannose N-glycan PP2-A1 phloem lectin in Arabidopsis. Plant Physiol. 153, 1345–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wild, M. et al. The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24, 3307–3319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seo, M., Jikumaru, Y. & Kamiya, Y. Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol. Biol. 773, 99–111 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C.A. Brosnan for help with the grafts, S. Dinant and L. Otten for help with xylem and phloem sap analysis, M. Lecorbeiller for statistical analysis, Tp. Sun for providing seeds of ga1-3 (Ler and Col-0 backgrounds), ga3ox1 ga3ox2 and pRGA:GFP–RGA, C. Schwechheimer for RGA antibody, and P. Genschik, B. Lacombe, C. Rameau, T. Heitz and D. Werck for helpful discussions. This work was supported by the Centre National de la Recherche Scientifique and the French ministry of research and higher education.

Author information

Authors and Affiliations

Authors

Contributions

T.R., J.M.D., L.S.A., D.H., E.C.B., I.L.D., F.G. and P.A. performed experimental work; T.R., J.M.D., M.W., P.H. and P.A. designed the experiments; T.R., J.M.D., P.H. and P.A. wrote the paper.

Corresponding author

Correspondence to Patrick Achard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regnault, T., Davière, JM., Wild, M. et al. The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis. Nature Plants 1, 15073 (2015). https://doi.org/10.1038/nplants.2015.73

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.73

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing