Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Associations with rhizosphere bacteria can confer an adaptive advantage to plants

Abstract

Host-associated microbiomes influence host health. However, it is unclear whether genotypic variations in host organisms influence the microbiome in ways that have adaptive consequences for the host. Here, we show that wild accessions of Arabidopsis thaliana differ in their ability to associate with the root-associated bacterium Pseudomonas fluorescens, with consequences for plant fitness. In a screen of 196 naturally occurring Arabidopsis accessions we identified lines that actively suppress Pseudomonas growth under gnotobiotic conditions. We planted accessions that support disparate levels of fluorescent Pseudomonads in natural soils; 16S ribosomal RNA sequencing revealed that accession-specific differences in the microbial communities were largely limited to a subset of Pseudomonadaceae species. These accession-specific differences in Pseudomonas growth resulted in enhanced or impaired fitness that depended on the host’s ability to support Pseudomonas growth, the specific Pseudomonas strains present in the soil and the nature of the stress. We suggest that small host-mediated changes in a microbiome can have large effects on host health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural variation in Arabidopsis affects growth of Pseudomonas in the rhizosphere.
Figure 2: The effect of Arabidopsis genotype is largely limited to OTUs in the family Pseudomonadaceae.
Figure 3: Incompatible Arabidopsis accessions actively inhibit growth of Pseudomonas.
Figure 4: Pseudomonas strains do not promote the growth of incompatible accessions.
Figure 5: Addition of Pseudomonas has a minor but significant effect on soil and rhizosphere community composition.
Figure 6: Disease outcome depends on host genotype, the Pseudomonas strain present and the pathogen.

Similar content being viewed by others

References

  1. Gallo, R. L. & Hooper, L. V. Epithelial antimicrobial defence of the skin and intestine. Nature Rev. Immunol. 12, 503–516 (2012).

    Article  CAS  Google Scholar 

  2. Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant. Sci. 17, 478–486 (2012).

    Article  CAS  Google Scholar 

  3. Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).

    Article  CAS  Google Scholar 

  4. Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    Article  CAS  Google Scholar 

  5. Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11, 76–83 (2010).

    Article  CAS  Google Scholar 

  6. Mukherjee, S. et al. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505, 103–107 (2014).

    Article  Google Scholar 

  7. Badri, D. V., Chaparro, J. M., Manter, D. K., Martinoia, E. & Vivanco, J. M. Influence of ATP-binding cassette transporters in root exudation of phytoalexins, signals, and in disease resistance. Front. Plant Sci. 3, 149 (2012).

    Article  Google Scholar 

  8. Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321, 5–33 (2009).

    Article  CAS  Google Scholar 

  9. Rovira, A. D. Plant root exudates. Bot. Rev. 35, 35–57 (1969).

    Article  CAS  Google Scholar 

  10. Lemanceau, P. et al. Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent Pseudomonads. Appl. Environ. Microbiol. 61, 1004–1012 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Germida, J. J., Sicilliano, S. D., de Freitas, J. R. & Arlette, M. S. Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol. Ecol. 26, 43–50 (1998).

    Article  CAS  Google Scholar 

  12. Bouffaud, M. L., Poirier, M. A., Muller, D. & Moenne-Loccoz, Y. Root microbiome relates to plant host evolution in maize and other Poaceae. Environ. Microbiol. (2014).

  13. Marschner, H., Römheld, V., Horst, W. J. & Martin, P. Root-induced changes in the rhizosphere: Importance for the mineral nutrition of plants. Z. Pflanz. Bodenkunde 149, 441–4456 (1986).

    Article  CAS  Google Scholar 

  14. Couillerot, O., Prigent-Combaret, C., Caballero-Mellado, J. & Moenne-Loccoz, Y. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett. Appl. Microbiol. 48, 505–512 (2009).

    Article  CAS  Google Scholar 

  15. Rodriguez, R. J. et al. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2, 404–416 (2008).

    Article  Google Scholar 

  16. Vacheron, J. et al. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4, 356 (2013).

    Article  Google Scholar 

  17. Weller, D. M. et al. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102, 403–412 (2012).

    Article  CAS  Google Scholar 

  18. Pieterse, C. M. et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10, 1571–1580 (1998).

    Article  CAS  Google Scholar 

  19. Li, H. et al. The use of Pseudomonas fluorescens P13 to control sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape. J. Microbiol. 49, 884–889 (2011).

    Article  Google Scholar 

  20. Jalili, F. et al. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J. Plant Physiol. 166, 667–674 (2009).

    Article  CAS  Google Scholar 

  21. Pallai, R., Hynes, R. K., Verma, B. & Nelson, L. M. Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6–8 under gnotobiotic conditions. Can. J. Microbiol. 58, 170–178 (2012).

    Article  CAS  Google Scholar 

  22. Brand, I . et al. Isolation and characterization of a superior potato root-colonizing Pseudomonas strain. in Proceedings of the International Workshop on Plant Growth Promoting Rhizobacteria. IOBC/WPRS Bulletin XIV/8 (eds Keel, C., Knoller, B. & De ´fago, G. ) 350–354 (1991).

    Google Scholar 

  23. Kamilova, F., Lamers, G. & Lugtenberg, B. Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ. Microbiol. 10, 2455–2461 (2008).

    Article  Google Scholar 

  24. Bolwerk, A. et al. Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant Microbe Interact. 16, 983–993 (2003).

    Article  CAS  Google Scholar 

  25. Simons, M. et al. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant Microbe Interact. 9, 600–607 (1996).

    Article  CAS  Google Scholar 

  26. Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).

    Article  CAS  Google Scholar 

  27. DeAngelis, K. M. et al. Selective progressive response of soil microbial community to wild oat roots. ISME J. 3, 168–178 (2009).

    Article  CAS  Google Scholar 

  28. Weinert, N. et al. PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol. Ecol. 75, 497–506 (2011).

    Article  CAS  Google Scholar 

  29. Bouffaud, M. L. et al. Is diversification history of maize influencing selection of soil bacteria by roots? Mol. Ecol. 21, 195–206 (2012).

    Article  Google Scholar 

  30. Millet, Y. A. et al. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22, 973–990 (2010).

    Article  CAS  Google Scholar 

  31. Mammarella, N. D. et al. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae. Phytochemistry, 112, 110–121 (2014).

    Article  Google Scholar 

  32. Peng, X. et al. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236, 1485–1498 (2012).

    Article  CAS  Google Scholar 

  33. Zheng, Z., Qamar, S. A., Chen, Z. & Mengiste, T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J. 48, 592–605 (2006).

    Article  CAS  Google Scholar 

  34. Nonejuie, P., Burkart, M., Pogliano, K. & Pogliano, J. Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc. Natl Acad. Sci. USA 110, 16169–16174 (2013).

    Article  CAS  Google Scholar 

  35. Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).

    Article  CAS  Google Scholar 

  36. Zamioudis, C., Mastranesti, P., Dhonukshe, P., Blilou, I. & Pieterse, C. M. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol. 162, 304–318 (2013).

    Article  CAS  Google Scholar 

  37. Srivastava, S. et al. Gene expression profiling through microarray analysis in Arabidopsis thaliana colonized by Pseudomonas putida MTCC5279, a plant growth promoting rhizobacterium. Plant Signal. Behav. 7, 235–245 (2012).

    Article  CAS  Google Scholar 

  38. Raaijmakers, J. M. et al. Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85, 1075–1081 (1995).

    Article  Google Scholar 

  39. Pieterse, C. M. et al. Induced systemic resistance by beneficial microbes. Ann. Rev. Phytopathol. 52, 347–375 (2014).

    Article  CAS  Google Scholar 

  40. Pieterse, C. M., van Wees, S. C., Hoffland, E., van Pelt, J. A. & van Loon, L. C. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8, 1225–1237 (1996).

    Article  CAS  Google Scholar 

  41. Eitas, T. K. & Dangl, J. L. NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr. Opin. Plant Biol. 13, 472–477 (2010).

    Article  CAS  Google Scholar 

  42. Qi, D. & Innes, R. W. Recent advances in plant NLR structure, function, localization, and signaling. Front. Immunol. 4, 3483 (2013).

    Article  Google Scholar 

  43. Meng, X. & Zhang, S. MAPK cascades in plant disease resistance signaling. Ann. Rev. Phytopathol. 51, 245–266 (2013).

    Article  CAS  Google Scholar 

  44. Wu, L., Chen, H., Curtis, C. & Fu, Z. Q. Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. Virulence 5, 710–721 (2014).

    Article  CAS  Google Scholar 

  45. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336 (2010).

    Article  CAS  Google Scholar 

  46. Kerr, M. K. Linear models for microarray data analysis: hidden similarities and differences. J. Comput. Biol. 10, 891–901 (2003).

    Article  CAS  Google Scholar 

  47. Daudi, A. et al. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24, 275–287 (2012).

    Article  CAS  Google Scholar 

  48. Diener, A. C. & Ausubel, F. M. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171, 305–321 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.H.H. is funded by MGH Toteston and Fund for Medical Discovery Fellowship grant 2014A051303 and previously by the Gordon and Betty Moore Foundation through Grant GBMF 2550.01 to the Life Sciences Research Foundation. B.S.S. was funded by a Charles King Trust Sr. Postdoctoral Fellowship. This work was supported by NIH R37 grant GM48707 and NSF grants MCB-0519898 and IOS-0929226 awarded to F.M.A. We thank J. Meyer, D. McEwan, J. Griffitts and L. Shapiro for critical reading of the manuscript and A. Diener and members of the Ausubel Lab for helpful comments and discussion.

Author information

Authors and Affiliations

Authors

Contributions

C.H.H. and F.M.A. conceived experiments and discussed results. C.H.H. and J.B. designed assays and performed experiments. B.S.S. and C.H.H. analysed data. C.H.H. wrote the manuscript with input from F.M.A., J.B. and B.S.S.

Corresponding author

Correspondence to Frederick M. Ausubel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haney, C., Samuel, B., Bush, J. et al. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nature Plants 1, 15051 (2015). https://doi.org/10.1038/nplants.2015.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.51

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene