Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

In vivo stoichiometry of photorespiratory metabolism

Abstract

Photorespiration is a major light-dependent metabolic pathway that consumes oxygen and produces carbon dioxide. In the metabolic step responsible for carbon dioxide production, two molecules of glycine (equivalent to two molecules of O2) are converted into one molecule of serine and one molecule of CO2. Here, we use quantitative isotopic techniques to determine the stoichiometry of this reaction in sunflower leaves, and thereby the O2/CO2 stoichiometry of photorespiration. We find that the effective O2/CO2 stoichiometric coefficient at the leaf level is very close to 2 under normal photorespiratory conditions, in line with expectations, but increases slightly at high rates of photorespiration. The net metabolic impact of this imbalance is likely to be modest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolite content and 13C-enrichment on labelling with 13C-Gly as a function of the oxygenation rate.
Figure 2: 15N-enrichment pattern and apparent fluxes on labelling with 15N-Gly.

Similar content being viewed by others

References

  1. Farquhar, G. D. Phil. Trans. R. Soc. Lond. B 323, 357–367 (1989).

    Article  CAS  Google Scholar 

  2. Zelitch, I. Proc. Natl Acad. Sci. USA 70, 579–584 (1973).

    Article  CAS  Google Scholar 

  3. Anav, A. et al. Rev. Geophys. 53, 785–818 (2015).

    Article  Google Scholar 

  4. Douce, R., Bourguignon, J., Neuburger, M. & Rebeillé, F. Trends Plant Sci. 6, 167–176 (2001).

    Article  CAS  Google Scholar 

  5. Timm, S. et al. Plant Cell 27, 1968–1984 (2015).

    Article  CAS  Google Scholar 

  6. Novitskaya, L., Trevanion, S. J., Driscoll, S., Foyer, C. H. & Noctor, G. Plant Cell Environ. 25, 821–835 (2002).

    Article  CAS  Google Scholar 

  7. Dirks, R. C., Singh, M. & Potter, G. S. New Phytol. 196, 1109–1121 (2012).

    Article  CAS  Google Scholar 

  8. Von Caemmerer, S. & Farquhar, G. D. Planta 153, 376–387 (1981).

    Article  CAS  Google Scholar 

  9. Bloom, A. J., Burger, M., Rubio Asensio, J. S. & Cousins, A. B. Science 328, 899–903 (2010).

    Article  CAS  Google Scholar 

  10. Scheible, W. R., Krapp, A. & Stitt, M. Plant Cell Environ. 23, 1155–1167 (2008).

    Article  Google Scholar 

  11. Tcherkez, G. et al. Plant Cell Environ. 35, 2208–2220 (2012).

    Article  CAS  Google Scholar 

  12. Tcherkez, G. et al. Proc. Natl Acad. Sci. USA 105, 797–802 (2008).

    Article  CAS  Google Scholar 

  13. Rachmilevitch, S., Cousins, A. B. & Bloom, A. J. Proc. Natl Acad. Sci. USA 101, 11506–11510 (2004).

    Article  CAS  Google Scholar 

  14. Bloom, A. J., Burger, M., Kimball, B. A. & Pinter, P. J. Nature Clim. Change 4, 477–480 (2014).

    Article  CAS  Google Scholar 

  15. Tcherkez, G., Cornic, G., Bligny, R., Gout, E. & Ghashghaie, J. Plant Physiol. 138, 1596–1606 (2005).

    Article  CAS  Google Scholar 

  16. Mesnard, F. & Ratcliffe, R. G. Phot. Res. 83, 163–180 (2005).

    Article  CAS  Google Scholar 

  17. Krüger, S. et al. PLoS One 6, e17806 (2011).

    Article  Google Scholar 

  18. Noctor, G. et al. Metabolomics 3, 161–174 (2007).

    Article  CAS  Google Scholar 

  19. Tcherkez, G. et al. Funct. Plant Biol. 39, 959–967 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Bligny for carrying out analyses associated with preliminary tests for quantitative 15N-NMR, Bruker Biospin for its contribution to find the best NMR quantitative analytical conditions and the Plateforme Métabolisme-Métabolome for access to IRMS, GCMS, NMR and LCMS facilities. This work was supported by the French Agence Nationale de la Recherche via a project Jeunes Chercheurs (under contract JC12-0001-01) and the Australian Research Council via a Future Fellowship (under contract FT140100645).

Author information

Authors and Affiliations

Authors

Contributions

E.R.A.B.-F., C.A. and G.T. performed experimental work; G.T. and C.A. designed the experiments; A.J.C. performed database searching (metabolomics); G.T. wrote the paper.

Corresponding author

Correspondence to Guillaume Tcherkez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abadie, C., Boex-Fontvieille, E., Carroll, A. et al. In vivo stoichiometry of photorespiratory metabolism. Nature Plants 2, 15220 (2016). https://doi.org/10.1038/nplants.2015.220

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing