Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A symbiotic SNARE protein generated by alternative termination of transcription

Abstract

Many microbes interact with their hosts across a membrane interface, which is often distinct from existing membranes. Understanding how this interface acquires its identity has significant implications. In the symbiosis between legumes and rhizobia, the symbiosome encases the intracellular bacteria and receives host secretory proteins important for bacterial development. We show that the Medicago truncatula SYNTAXIN 132 (SYP132) gene undergoes alternative cleavage and polyadenylation during transcription, giving rise to two target-membrane soluble NSF attachment protein receptor (t-SNARE) isoforms. One of these isoforms, SYP132A, is induced during the symbiosis, is able to localize to the peribacteroid membrane, and is required for the maturation of symbiosomes into functional forms. The second isoform, SYP132C, has important functions unrelated to symbiosis. The SYP132A sequence is broadly found in flowering plants that form arbuscular mycorrhizal symbiosis, an ancestral mutualism between soil fungi and most land plants. SYP132A silencing severely inhibited arbuscule colonization, indicating that SYP132A is an ancient factor specifying plant–microbe interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nodule-specific SYP132A is produced through alternative cleavage and polyadenylation.
Figure 2: Differential subcellular localization of SYP132 protein isoforms.
Figure 3: SYP132A is required for the maturation of symbiosomes.
Figure 4: SYP132A is necessary for arbuscular mycorrhizal symbiosis.
Figure 5: Biogenesis of SYP13 proteins in higher plants.

Similar content being viewed by others

References

  1. Ivanov, S., Fedorova, E. & Bisseling, T. Intracellular plant microbe associations: secretory pathways and the formation of perimicrobial compartments. Curr. Opin. Plant Biol. 13, 372–377 (2010).

    Article  CAS  Google Scholar 

  2. Wang, D. et al. A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327, 1126–1129 (2010).

    Article  CAS  Google Scholar 

  3. Zheng, H. et al. The syntaxin family of proteins in Arabidopsis: a new syntaxin homologue shows polymorphism between two ecotypes. J. Exp. Bot. 50, 915–924 (1999).

    Article  CAS  Google Scholar 

  4. Catalano, C. M., Lane, W. S. & Sherrier, D. J. Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules. Electrophoresis 25, 519–531 (2004)

    Article  CAS  Google Scholar 

  5. Catalano, C. et al. Medicago truncatula syntaxin SYP132 defines the symbiosome membrane and infection droplet membrane in root nodules. Planta 225, 541–550 (2007).

    Article  CAS  Google Scholar 

  6. Limpens, E. et al. Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. Plant Cell 21, 2811–2828 (2009).

    Article  CAS  Google Scholar 

  7. Benedito, V. A. et al. A gene expression atlas of the model legume Medicago truncatula. Plant J. 55, 504–513 (2008).

    Article  CAS  Google Scholar 

  8. Elkon, R., Ugalde, A. P. & Agami, R. Alternative cleavage and polyadenylation: extent, regulation and function. Nature Rev. Genet. 14, 496–506 (2013).

    Article  CAS  Google Scholar 

  9. Kalde, M. et al. The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc. Natl Acad. Sci. USA 104, 11850–11855 (2007).

    Article  CAS  Google Scholar 

  10. Van de Velde, W. et al. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327, 1122–1126 (2010).

    Article  CAS  Google Scholar 

  11. Kondorosi, E., Mergaert, P. & Kereszt, A. A paradigm for endosymbiotic life cell differentiation of Rhizobium bacteria provoked by host plant factors. Annu. Rev. Microbiol. 67, 611–628 (2013).

    Article  CAS  Google Scholar 

  12. Delaux, P.-M. et al. Evolution of the plant-microbe symbiotic ‘toolkit’. Trends Plant Sci. 18, 298–304 (2013).

    Article  CAS  Google Scholar 

  13. Ivanov, S. et al. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc. Natl Acad. Sci. USA 109, 8316–8321 (2012).

    Article  CAS  Google Scholar 

  14. Sinharoy, S. et al. The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula. Plant Cell 25, 3584–3601 (2013).

    Article  CAS  Google Scholar 

  15. Collins, N. C. et al. SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973–977 (2003).

    Article  CAS  Google Scholar 

  16. Assaad, F. F. et al. The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol. Biol. Cell 15, 5118–5129 (2004).

    Article  CAS  Google Scholar 

  17. Meyer, D. et al. Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J. 57, 986–999 (2009).

    Article  CAS  Google Scholar 

  18. Kwon, C. et al. Co-option of a default secretory pathway for plant immune responses. Nature 451, 835–840 (2008).

    Article  CAS  Google Scholar 

  19. Frazer, K. A. et al. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004).

    Article  CAS  Google Scholar 

  20. Curtis, M. D. & Grossniklaus, U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469 (2003).

    Article  CAS  Google Scholar 

  21. Helliwell, C. A. & Waterhouse, P. M. Constructs and methods for hairpin RNA-mediated gene silencing in plants. Meth. Enzymol. 392, 24–35 (2005).

    Article  CAS  Google Scholar 

  22. Boisson-Dernier, A. et al. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol. Plant Microbe Interact. 14, 695–700 (2001).

    Article  CAS  Google Scholar 

  23. Leong, S. A., Williams, P. H. & Ditta, G. S. Analysis of the 5′ regulatory region of the gene for δ-aminolevulinic acid synthetase of Rhizobium meliloti. Nucleic Acids Res. 13, 5965–5976 (1985).

    Article  CAS  Google Scholar 

  24. Giovannetti, M. & Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84, 489–500 (1980).

    Article  Google Scholar 

  25. Kakar, K. et al. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 4, 18–30 (2008).

    Article  Google Scholar 

  26. Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  27. Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Hebert, S. Hazen and T. Baskin (University of Massachusetts, Amherst) for access to instruments and C. Haney (University of British Columbia, Vancouver) for modifying the pHellsGate8 vector with the mCherry reporter. We thank F. M. Ausubel (Massachusetts General Hospital, Boston), J. S. Griffitts (Brigham Young University, Provo), S. R. Long (Stanford University, Stanford) and A. Caicedo (University of Massachusetts, Amherst) for insightful discussions of the manuscript. This work was supported by the University of Massachusetts Amherst and USDA Hatch Grant (to D.W.).

Author information

Authors and Affiliations

Authors

Contributions

D.W., H.P., O.O., E.W. and B.W. designed the research; H.P., O.O., X.W. and X.Z. performed the experiments; D.W., C.S., B.W., X.W. performed alignments and evolutionary analysis; D.W., H.P., O.O. and C.S. wrote the manuscript.

Corresponding author

Correspondence to Dong Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Oztas, O., Zhang, X. et al. A symbiotic SNARE protein generated by alternative termination of transcription. Nature Plants 2, 15197 (2016). https://doi.org/10.1038/nplants.2015.197

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing