Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein turnover in plant biology

Abstract

The protein content of plant cells is constantly being updated. This process is driven by the opposing actions of protein degradation, which defines the half-life of each polypeptide, and protein synthesis. Our understanding of the processes that regulate protein synthesis and degradation in plants has advanced significantly over the past decade. Post-transcriptional modifications that influence features of the mRNA populations, such as poly(A) tail length and secondary structure, contribute to the regulation of protein synthesis. Post-translational modifications such as phosphorylation, ubiquitination and non-enzymatic processes such as nitrosylation and carbonylation, govern the rate of degradation. Regulators such as the plant TOR kinase, and effectors such as the E3 ligases, allow plants to balance protein synthesis and degradation under developmental and environmental change. Establishing an integrated understanding of the processes that underpin changes in protein abundance under various physiological and developmental scenarios will accelerate our ability to model and rationally engineer plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plant protein synthesis and degradation machinery and its regulation.
Figure 2: Proteome development and steady-states during the life-cycle of plants.
Figure 3: Combining quantitative protein synthesis and degradation measurements with physiological studies.

Similar content being viewed by others

References

  1. Xiong, Y. et al. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496, 181–186 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li, P. et al. The developmental dynamics of the maize leaf transcriptome. Nature Genet. 42, 1060–1067 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Juntawong, P., Girke, T., Bazin, J. & Bailey-Serres, J. Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc. Natl Acad. Sci. USA 111, E203–E212 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Pal, S. K. et al. Diurnal changes of polysome loading track sucrose content in the rosette of wild-type arabidopsis and the starchless pgm mutant. Plant Physiol. 162, 1246–1265 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hinkson, I. V. & Elias, J. E. The dynamic state of protein turnover: It's about time. Trends Cell Biol. 21, 293–303 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Boisvert, F. M. et al. A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol. Cell Proteomics 11, M111.011429 (2012).

    Article  PubMed  Google Scholar 

  9. Qin, Q. et al. Arabidopsis DELLA protein degradation is controlled by a type-one protein phosphatase, TOPP4. PLoS Genet. 10, e1004464 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. van Wijk, K. J. Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes. Annu. Rev. Plant Biol. (2015).

  11. Li, L., Carrie, C., Nelson, C., Whelan, J. & Millar, A. H. Accumulation of newly synthesized F1 in vivo in Arabidopsis mitochondria provides evidence for modular assembly of the plant F1Fo ATP synthase. J. Biol. Chem. 287, 25749–25757 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rose, C. M. et al. Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Mol. Cell Proteomics 11, 724–744 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baerenfaller, K. et al. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320, 938–941 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Majeran, W. et al. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Plant Cell 22, 3509–3542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Edwards, J. M., Roberts, T. H. & Atwell, B. J. Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis. J. Exp. Bot. 63, 4389–4402 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, J. et al. Expression changes of ribosomal proteins in phosphate- and iron-deficient Arabidopsis roots predict stress-specific alterations in ribosome composition. BMC Genom. 14, 783 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oelze, M. L., Muthuramalingam, M., Vogel, M. O. & Dietz, K. J. The link between transcript regulation and de novo protein synthesis in the retrograde high light acclimation response of Arabidopsis thaliana. BMC Genom. 15, 320 (2014).

  18. Ling, Q., Huang, W., Baldwin, A. & Jarvis, P. Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system. Science 338, 655–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Shabek, N. & Zheng, N. Plant ubiquitin ligases as signaling hubs. Nature Struct. Mol. Biol. 21, 293–296 (2014).

    Article  CAS  Google Scholar 

  20. Sun, H. H. et al. Proteomics analysis reveals a highly heterogeneous proteasome composition and the post-translational regulation of peptidase activity under pathogen signaling in plants. J. Proteome Res. 12, 5084–5095 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Dielen, A. S., Badaoui, S., Candresse, T. & German-Retana, S. The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide‑and‑seek game. Mol. Plant Pathol. 11, 293–308 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Pan, R., Kaur, N. & Hu, J. The Arabidopsis mitochondrial membrane-bound ubiquitin protease UBP27 contributes to mitochondrial morphogenesis. Plant J. 78, 1047–1059 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Izumi, M., Hidema, J., Makino, A. & Ishida, H. Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiol. 161, 1682–1693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kato, Y. & Sakamoto, W. New insights into the types and function of proteases in plastids. Int. Rev. Cell Mol. Biol. 280, 185–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Kwasniak, M., Pogorzelec, L., Migdal, I., Smakowska, E. & Janska, H. Proteolytic system of plant mitochondria. Physiol. Plant 145, 187–195 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Galland, M. et al. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Mol. Cell Proteomics 13, 252–268 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Xiong, Y. & Sheen, J. Moving beyond translation: glucose-TOR signaling in the transcriptional control of cell cycle. Cell Cycle 12, 1989–1990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiong, Y. & Sheen, J. The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol. 164, 499–512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Y. et al. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature, 513, 440–443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gibbs, D. J., Bacardit, J., Bachmair, A. & Holdsworth, M. J. The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol. 24, 603–611 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Li, L., Nelson, C. J., Solheim, C., Whelan, J. & Millar, A. H. Determining degradation and synthesis rates of Arabidopsis proteins using the kinetics of progressive 15N labeling of two-dimensional gel-separated protein spots. Mol. Cell Proteomics 11, M111 010025 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nelson, C. J., Alexova, R., Jacoby, R. P. & Millar, A. H. Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labelling. Plant Physiol. 166, 91–108 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pratt, J. M. et al. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell Proteomics 1, 579–591 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B. & Ghaemmaghami, S. Analysis of proteome dynamics in the mouse brain. Proc. Natl Acad. Sci. USA 107, 14508–14513 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Li, Q. Advances in protein turnover analysis at the global level and biological insights. Mass Spectrom. Rev. 29, 717–736 (2010).

    Article  PubMed  Google Scholar 

  36. Nelson, C. J., Li, L., Jacoby, R. P. & Millar, A. H. Degradation rate of mitochondrial proteins in Arabidopsis thaliana cells. J. Proteome Res. 12, 3449–3459 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, Z., Zhang, W., Stanley, B. A. & Assmann, S. M. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20, 3210–3226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu, M., Dai, S., McClung, S., Yan, X. & Chen, S. Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol. Cell Proteomics 8, 752–766 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Majeran, W., Cai, Y., Sun, Q. & van Wijk, K. J. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17, 3111–3140 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Majeran, W. et al. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol. Cell Proteomics 7, 1609–1638 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pokorska, B., Zienkiewicz, M., Powikrowska, M., Drozak, A. & Romanowska, E. Differential turnover of the photosystem II reaction centre D1 protein in mesophyll and bundle sheath chloroplasts of maize. Biochim. Biophys. Acta 1787, 1161–1169 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Dembinsky, D. et al. Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol. 145, 575–588 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wan, J. et al. Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. Mol. Plant Microbe Interact. 18, 458–467 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Zhu, J. et al. Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol. 145, 1533–1548 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Park, J., Okita, T. W. & Edwards, G. E. Expression profiling and proteomic analysis of isolated photosynthetic cells of the non-Kranz C4 species Bienertia sinuspersici. Funct. Plant Biol. 37, 1–13 (2010).

    Article  CAS  Google Scholar 

  46. Li, L. et al. Subcomplexes of ancestral respiratory complex I subunits rapidly turn over in vivo as productive assembly intermediates in Arabidopsis. J. Biol. Chem. 288, 5707–5717 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Marchi, L., Polverini, E., Degola, F., Baruffini, E. & Restivo, F. M. Glutamate dehydrogenase isoenzyme 3 (GDH3) of Arabidopsis thaliana is less thermostable than GDH1 and GDH2 isoenzymes. Plant Physiol. Biochem. 83, 225–231 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Luo, Q. et al. COP1 and phyB Physically interact with PIL1 to regulate its stability and photomorphogenic development in Arabidopsis. Plant Cell 26, 2441–2456 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mullet, J. E., Klein, P. G. & Klein, R. R. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and D1 by increasing apoprotein stability. Proc. Natl Acad. Sci. USA 87, 4038–4042 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Calcaterra, N. B. et al. Contribution of the FAD binding site residue tyrosine 308 to the stability of pea ferredoxin-NADP+ oxidoreductase. Biochemistry 34, 12842–12848 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Merchant, S. & Bogorad, L. Rapid degradation of apoplastocyanin in Cu(II)-deficient cells of Chlamydomonas reinhardtii. J Biol Chem 261, 15850–15853 (1986).

    CAS  PubMed  Google Scholar 

  52. Koivuniemi, A., Aro, E. M. & Andersson, B. Degradation of the D1- and D2-proteins of photosystem II in higher plants is regulated by reversible phosphorylation. Biochemistry 34, 16022–16029 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Tikkanen, M. & Aro, E. M. Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim. Biophys. Acta 1817, 232–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, D. Y., Scalf, M., Smith, L. M. & Vierstra, R. D. Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell 25, 1523–1540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Svozil, J., Hirsch-Hoffmann, M., Dudler, R., Gruissem, W. & Baerenfaller, K. Protein abundance changes and ubiquitylation targets identified after inhibition of the proteasome with syringolin A. Mol. Cell Proteomics 13, 1523–1536 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miller, M. J. et al. Quantitative proteomics reveals factors regulating RNA biology as dynamic targets of stress-induced SUMOylation in Arabidopsis. Mol. Cell Proteomics 12, 449–463 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Lindermayr, C., Saalbach, G. & Durner, J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol. 137, 921–930 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou, J. et al. E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses. PLoS Genet. 10, e1004116 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Moller, I. M., Jensen, P. E. & Hansson, A. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58, 459–481 (2007).

    Article  PubMed  Google Scholar 

  60. Ytterberg, A. J. & Jensen, O. N. Modification-specific proteomics in plant biology. J. Proteomics 73, 2249–2266 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Yang, X. Y. et al. Measuring the turnover rates of Arabidopsis proteins using deuterium oxide: an auxin signaling case study. Plant J. 63, 680–695 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Chico, J. M. et al. Repression of jasmonate-dependent defenses by shade involves differential regulation of protein stability of MYC transcription factors and their JAZ repressors in Arabidopsis. Plant Cell 26, 1967–1980 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Al-Taweel, K. et al. A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiol. 145, 258–265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bruce, W. B., Edmeades, G. O. & Barker, T. C. Molecular and physiological approaches to maize improvement for drought tolerance. J. Exp. Bot. 53, 13–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Borrell, A. K. et al. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J. Exp. Bot. 65, 6251–6263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gallie, D. R. R., Meeley, R., Young, T. Engineering single‑gene‑controlled staygreen potential into plants. US patent 8779235 B2 (2013).

  67. Zhang, C. Y. et al. Comparative proteomic study reveals dynamic proteome changes between superhybrid rice LYP9 and its parents at different developmental stages. J. Plant Physiol. 169, 387–398 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Shi, W. J. et al. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytol. 197, 825–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Han, C., Yang, P. F., Sakata, K. & Komatsu, S. Quantitative proteomics reveals the role of protein phosphorylation in rice embryos during early stages of germination. J. Proteome Res. 13, 1766–1782 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, S. J. et al. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment. Physiol. Plant (2014).

  71. Kurepa, J., Wang, S., Li, Y. & Smalle, J. Proteasome regulation, plant growth and stress tolerance. Plant Signal. Behav. 4, 924–927 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Abdallah, C. et al. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. J. Proteomics 108, 354–368 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Larrainzar, E. et al. Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules. Plant Cell Environ. 37, 2051–2063 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Bao, Z. et al. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl. Environ. Microbiol. 80, 5043–5052 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Adam, Z. Emerging roles for diverse intramembrane proteases in plant biology. Biochim. Biophys. Acta 1828, 2933–2936 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Janska, H., Kwasniak, M. & Szczepanowska, J. Protein quality control in organelles — AAA/FtsH story. Biochim. Biophys. Acta 1833, 381–387 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.H.M. is supported by an ARC Future Fellowship (FT110100242) and the ARC Centre of Excellence in Plant Energy Biology (CE140100008).

Author information

Authors and Affiliations

Authors

Contributions

C.J.N. and A.H.M. co-wrote and edited the review and generated the figures.

Corresponding author

Correspondence to A. Harvey Millar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, C., Millar, A. Protein turnover in plant biology. Nature Plants 1, 15017 (2015). https://doi.org/10.1038/nplants.2015.17

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.17

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing