Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of the plastidial stringent response in plant growth and stress responses

Abstract

The regulatory nucleotide guanosine 5′-diphosphate 3′-diphosphate (ppGpp), which was originally identified in Escherichia coli, controls the expression of a large gene set and many enzyme activities. The ppGpp-dependent control of cell activities is referred to as the stringent response. Recently, genes responsible for the synthesis and degradation of ppGpp have been identified not only in bacteria, but also in eukaryotes, including plants and animals, indicating that the stringent response is, unexpectedly, widely conserved. However, the exact function of the eukaryotic stringent response remains elusive. Here, we isolated an Arabidopsis mutant that overproduces ppGpp in chloroplasts. This mutant shows metabolite reduction, dwarf chloroplasts and significantly suppressed plastidial transcription and translation. Under nutrient-deficient conditions, the mutant shows more robust growth than the wild type. These results indicate that the ppGpp-dependent control of the organelle function is crucial for the systematic growth of host organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypes of RSH2- and RSH3-overexpression lines.
Figure 2: Chloroplast structure in the mutants.
Figure 3: Lipid profiles, metabolic changes and plastidial gene expression in rsh mutants.
Figure 4: ppGpp accumulation results in tolerance to nutrient starvation.

Similar content being viewed by others

References

  1. Cashel, M., Gentry, D. R., Hernandez, V. J. & Vinella, D. in Escherichia coli and Salmonella: Cellular and Molecular Biology 2nd edn (ed. Neidhardt, F. C. ) 1458–1496 (ASM Press, 1996).

    Google Scholar 

  2. Cashel, M. The control of ribonucleic acid synthesis in Escherichia coli IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J. Biol. Chem. 244, 3133–3141 (1969).

    CAS  PubMed  Google Scholar 

  3. Atkinson, G. C., Tenson, T. & Hauryliuk, V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS ONE 6, e23479 (2011).

    Article  CAS  Google Scholar 

  4. Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nature Rev. Microbiol. 13, 298–309 (2015).

    Article  CAS  Google Scholar 

  5. Potrykus, K. & Cashel, M. (p)ppGpp: still magical? Annu. Rev. Microbiol. 62, 35–51 (2008).

    Article  CAS  Google Scholar 

  6. Mechold, U., Potrykus, K., Murphy, H., Murakami, K. S. & Cashel, M. Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Res. 41, 6175–6189 (2013).

    Article  CAS  Google Scholar 

  7. Ross, W., Vrentas, C. E., Sanchez-Vazquez, P., Gaal, T. & Gourse, R. L. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol. Cell 50, 420–429 (2013).

    Article  CAS  Google Scholar 

  8. Zuo, Y., Wang, Y. & Steitz, T. A. The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Mol. Cell 50, 430–436 (2013).

    Article  CAS  Google Scholar 

  9. Milon, P. et al. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proc. Natl Acad. Sci. USA 103, 13962–13967 (2006).

    Article  CAS  Google Scholar 

  10. Rojas, A.-M., Ehrenberg, M. N., Andersson, S. G. & Kurland, C. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis. Mol. Gen. Genet. 197, 36–45 (1984).

    Article  CAS  Google Scholar 

  11. Kanjee, U., Ogata, K. & Houry, W. A. Direct binding targets of the stringent response alarmone (p)ppGpp. Mol. Microbiol. 85, 1029–1043 (2012).

    Article  CAS  Google Scholar 

  12. Maisonneuve, E., Castro-Camargo, M. & Gerdes, K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154, 1140–1150 (2013).

    Article  CAS  Google Scholar 

  13. Masuda, S. in Advances in Photosynthesis – Fundamental Aspects (ed. Najafpour, M. ) 487–500 (In Tech, 2012).

    Google Scholar 

  14. Battesti, A. l. & Bouveret, E. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol. Microbiol. 62, 1048–1063 (2006).

    Article  CAS  Google Scholar 

  15. Tozawa, Y. & Nomura, Y. Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants. Plant Biol. 13, 699–709 (2011).

    Article  CAS  Google Scholar 

  16. van der Biezen, E. A., Sun, J., Coleman, M. J., Bibb, M. J. & Jones, J. D. Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. Proc. Natl Acad. Sci. USA 97, 3747–3752 (2000).

    Article  CAS  Google Scholar 

  17. Givens, R. M. et al. Inducible expression, enzymatic activity, and origin of higher plant homologues of bacterial RelA/SpoT stress proteins in Nicotiana tabacum. J. Biol. Chem. 279, 7495–7504 (2004).

    Article  CAS  Google Scholar 

  18. Masuda, S. et al. The bacterial stringent response, conserved in chloroplasts, controls plant fertilization. Plant Cell Physiol. 49, 135–141 (2008).

    Article  CAS  Google Scholar 

  19. Tozawa, Y. et al. Calcium-activated (p)ppGpp synthetase in chloroplasts of land plants. J. Biol. Chem. 282, 35536–35545 (2007).

    Article  CAS  Google Scholar 

  20. Mizusawa, K., Masuda, S. & Ohta, H. Expression profiling of four RelA/SpoT-like proteins, homologues of bacterial stringent factors, in Arabidopsis thaliana. Planta 228, 553–562 (2008).

    Article  CAS  Google Scholar 

  21. Ihara, Y., Ohta, H. & Masuda, S. A highly sensitive quantification method for the accumulation of alarmone ppGpp in Arabidopsis thaliana using UPLC-ESI-qMS/MS. J. Plant Res. 128, 511–518 (2015).

    Article  CAS  Google Scholar 

  22. Takahashi, K., Kasai, K. & Ochi, K. Identification of the bacterial alarmone guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants. Proc. Natl Acad. Sci. USA 101, 4320–4324 (2004).

    Article  CAS  Google Scholar 

  23. Zimorski, V., Ku, C., Martin, W. F. & Gould, S. B. Endosymbiotic theory for organelle origins. Curr. Opin. Microbiol. 22, 38–48 (2014).

    Article  CAS  Google Scholar 

  24. Liere, K., Weihe, A. & Börner, T. The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation. J. Plant Phys. 168, 1345–1360 (2011).

    Article  CAS  Google Scholar 

  25. Sato, M. et al. Bacterial alarmone, guanosine 5′-diphosphate 3′-diphosphate (ppGpp), predominantly binds the β’ subunit of plastid-encoded plastid RNA polymerase in chloroplasts. ChemBioChem 10, 1227–1233 (2009).

    Article  CAS  Google Scholar 

  26. Nagashima, A. et al. DNA microarray analysis of plastid gene expression in an Arabidopsis mutant deficient in a plastid transcription factor sigma, SIG2. Biosci. Biotechnol. Biochem. 68, 694–704 (2004).

    Article  CAS  Google Scholar 

  27. Parry, M. A., Keys, A. J., Madgwick, P. J., Carmo-Silva, A. E. & Andralojc, P. J. Rubisco regulation: a role for inhibitors. J. Exp. Bot. 59, 1569–1580 (2008).

    Article  CAS  Google Scholar 

  28. Coruzzi, G. M. & Zhou, L. Carbon and nitrogen sensing and signaling in plants: emerging “matrix effects”. Curr. Opin. Plant Biol. 4, 247–253 (2001).

    Article  CAS  Google Scholar 

  29. Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article  CAS  Google Scholar 

  30. Krásný, L. & Gourse, R. L. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 23, 4473–4483 (2004).

    Article  Google Scholar 

  31. Liu, K. et al. Molecular mechanism and evolution of guanylate kinase regulation by (p)ppGpp. Mol. Cell 57, 735–749 (2015).

    Article  CAS  Google Scholar 

  32. Miura, E. et al. The balance between protein synthesis and degradation in chloroplasts determines leaf variegation in Arabidopsis yellow variegated mutants. Plant Cell 19, 1313–1328 (2007).

    Article  CAS  Google Scholar 

  33. Tiboni, O., Pasquale, G. & Ciferri, O. Purification of the elongation factors present in spinach chloroplasts. Eur. J. Biochem. 92, 471–477 (1978).

    Article  CAS  Google Scholar 

  34. Rodermel, S. R., Abbott, M. S. & Bogorad, L. Nuclear-organelle interactions: nuclear antisense gene inhibits ribulose bisphosphate carboxylase enzyme levels in transformed tobacco plants. Cell 55, 673–681 (1988).

    Article  CAS  Google Scholar 

  35. Bang, W. Y. et al. AtObgC, a plant ortholog of bacterial Obg, is a chloroplast-targeting GTPase essential for early embryogenesis. Plant Mol. Biol. 71, 379–390 (2009).

    Article  CAS  Google Scholar 

  36. Chigri, F., Sippel, C., Kolb, M. & Vothknecht, U. C. Arabidopsis OBG-like GTPase (AtOBGL) is localized in chloroplasts and has an essential function in embryo development. Mol. Plant 2, 1373–1383 (2009).

    Article  CAS  Google Scholar 

  37. Masuda, S., Tozawa, Y. & Ohta, H. Possible targets of magic spots in plant signalling. Plant Signal. Behav. 3, 1021–1023 (2008).

    Article  Google Scholar 

  38. Chen, J. et al. AtObgC-AtRSH1 interaction may play a vital role in stress response signal transduction in Arabidopsis. Plant Physiol. Biochem. 74, 176–184 (2014).

    Article  CAS  Google Scholar 

  39. Sulpice, R. et al. Starch as a major integrator in the regulation of plant growth. Proc. Natl Acad. Sci. USA 106, 10348–10353 (2009).

    Article  CAS  Google Scholar 

  40. Ruan, Y.-L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 65, 33–67 (2014).

    Article  CAS  Google Scholar 

  41. Sheen, J. Master regulators in plant glucose signaling networks. J. Plant Biol. 57, 67–79 (2014).

    Article  CAS  Google Scholar 

  42. Sun, D. et al. A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Nature Struct. Mol. Biol. 17, 1188–1194 (2010).

    Article  CAS  Google Scholar 

  43. Porra, R., Thompson, W. & Kriedemann, P. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394 (1989).

    Article  CAS  Google Scholar 

  44. Araya, T., Noguchi, K. & Terashima, I. Effect of nitrogen nutrition on the carbohydrate repression of photosynthesis in leaves of Phaseolus vulgaris L. J. Plant Res. 123, 371–379 (2010).

    Article  CAS  Google Scholar 

  45. Ticconi, C. A., Delatorre, C. A. & Abel, S. Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiol. 127, 963–972 (2001).

    Article  CAS  Google Scholar 

  46. Yoshimoto, K. et al. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21, 2914–2927 (2009).

    Article  CAS  Google Scholar 

  47. Oikawa, A., Fujita, N., Horie, R., Saito, K. & Tawaraya, K. Solid-phase extraction for metabolomic analysis of high-salinity samples by capillary electrophoresis-mass spectrometry. J. Sep. Sci. 34, 1063–1068 (2011).

    Article  CAS  Google Scholar 

  48. Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Sasaki (RIKEN) , K. Yamamichi (Tokyo Institute of Technology) and K. Hori (Tokyo Institute of Technology) for excellent technical assistance, L. Kwok (Tokyo Institute of Technology) for critical reading of the manuscript, and T. Hisabori (Tokyo Institute of Technology), Y. Nagano (Saga University) and M. Ikeuchi (The University of Tokyo) for antibodies. We also thank the Arabidopsis Biological Resource Center (The Ohio State University) for providing mutant seeds. This work was supported by a Grants-in-Aid for Scientific Research on Innovative Areas from MEXT of Japan (No. 25120709) to S.M.

Author information

Authors and Affiliations

Authors

Contributions

M.M. and R.H. performed phenotypic analysis of mutants that includes gene expression analysis, immunoblot analysis, photosynthetic activity measurements and lipid analysis. Y.I. performed ppGpp quantification. R.S. analysed localization of GFP fusion proteins. R.H. and A.O. performed metabolome analysis, Y.K. and M.S. performed hormone quantification. All authors analysed data and discussed the results. S.M. designed the research. M.M. and S.M. wrote the article.

Corresponding author

Correspondence to Shinji Masuda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maekawa, M., Honoki, R., Ihara, Y. et al. Impact of the plastidial stringent response in plant growth and stress responses. Nature Plants 1, 15167 (2015). https://doi.org/10.1038/nplants.2015.167

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing