Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity

Abstract

Development of diverse multicellular organisms relies on coordination of single-cell polarities within the plane of the tissue layer (planar polarity). Cell polarity often involves plasma membrane heterogeneity generated by accumulation of specific lipids and proteins into membrane subdomains. Coordinated hair positioning along Arabidopsis root epidermal cells provides a planar polarity model in plants, but knowledge about the functions of proteo-lipid domains in planar polarity signalling remains limited. Here we show that Rho-of-plant (ROP) 2 and 6, phosphatidylinositol-4-phosphate 5-kinase 3 (PIP5K3), DYNAMIN-RELATED PROTEIN (DRP) 1A and DRP2B accumulate in a sterol-enriched, polar membrane domain during root hair initiation. DRP1A, DRP2B, PIP5K3 and sterols are required for planar polarity and the AGCVIII kinase D6 PROTEIN KINASE (D6PK) is a modulator of this process. D6PK undergoes phosphatidylinositol-4,5-bisphosphate- and sterol-dependent basal-to-planar polarity switching into the polar, lipid-enriched domain just before hair formation, unravelling lipid-dependent D6PK localization during late planar polarity signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A sterol-enriched polar domain accumulates ROP2, ROP6, PI5K3, DRP1A and DRP2B during hair initiation.
Figure 2: Sterol, PIP5K3 and DRP function is required for polar ROP positioning during planar polarity formation.
Figure 3: D6PK basal-to-planar polarity switching and function in planar polarity.
Figure 4: D6PK polarity requires sterol, DRP1A and PIP5K3 function during early hair bulging.
Figure 5: Direct D6PK interaction with phosphatidylinositol phosphates in vitro.

Similar content being viewed by others

References

  1. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  Google Scholar 

  2. Zappel, N. F. & Panstruga, R. Heterogeneity and lateral compartmentalization of plant plasma membranes. Curr. Opin. Plant Biol. 11, 632–640 (2008).

    Article  CAS  Google Scholar 

  3. Nakamura, M., Kiefer, C. S. & Grebe, M. Planar polarity, tissue polarity and planar morphogenesis in plants. Curr. Opin. Plant Biol. 15, 593–600 (2012).

    Article  CAS  Google Scholar 

  4. Molendijk, A. J. et al. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J. 20, 2779–2788 (2001).

    Article  CAS  Google Scholar 

  5. Jones, M. A. et al. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14, 763–776 (2002).

    Article  CAS  Google Scholar 

  6. Kost, B. et al. Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 19, 317–330 (1999).

    Article  Google Scholar 

  7. Willemsen, V. et al. Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15, 612–625 (2003).

    Article  CAS  Google Scholar 

  8. Men, S. et al. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nature Cell Biol. 10, 237–244 (2008).

    Article  CAS  Google Scholar 

  9. Meijer, H. J. & Munnik, T. Phospholipid-based signaling in plants. Ann. Rev. Plant Biol. 54, 265–306 (2003).

    Article  CAS  Google Scholar 

  10. Synek, L., Sekeres, J. & Zarsky, V. The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells. Front. Plant Sci. 4, 543 (2014).

    Article  Google Scholar 

  11. Yoo, C. M., Quan, L., Cannon, A. E., Wen, J. & Blancaflor, E. B. AGD1, a class 1 ARF-GAP, acts in common signaling pathways with phosphoinositide metabolism and the actin cytoskeleton in controlling Arabidopsis root hair polarity. Plant J. 69, 1064–1076 (2012).

    Article  CAS  Google Scholar 

  12. Braun, M., Baluska, F., von Witsch, M. & Menzel, D. Redistribution of actin, profilin and phosphatidylinositol-4, 5-bisphosphate in growing and maturing root hairs. Planta 209, 435–443 (1999).

    Article  CAS  Google Scholar 

  13. Kusano, H. et al. The Arabidopsis Phosphatidylinositol Phosphate 5-Kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20, 367–380 (2008).

    Article  CAS  Google Scholar 

  14. Stenzel, I. et al. The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20, 124–141 (2008).

    Article  CAS  Google Scholar 

  15. Preuss, M. L. et al. A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J. Cell Biol. 172, 991–998 (2006).

    Article  CAS  Google Scholar 

  16. Thole, J. M., Vermeer, J. E., Zhang, Y., Gadella, T. W. Jr. & Nielsen, E. Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell 20, 381–395 (2008).

    Article  CAS  Google Scholar 

  17. Ischebeck, T. et al. Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell 25, 4894–4911 (2013).

    Article  CAS  Google Scholar 

  18. Tejos, R. et al. Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell 26, 2114–2128 (2014).

    Article  CAS  Google Scholar 

  19. Barbosa, I. C., Zourelidou, M., Willige, B. C., Weller, B. & Schwechheimer, C. D6 PROTEIN KINASE activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane. Dev. Cell 29, 674–685 (2014).

    Article  CAS  Google Scholar 

  20. Zourelidou, M. et al. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. eLife e02860 (2014).

  21. Zourelidou, M. et al. The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana. Development 136, 627–636 (2009).

    Article  CAS  Google Scholar 

  22. Willige, B. C. et al. D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. Plant Cell 25, 1674–1688 (2013).

    Article  CAS  Google Scholar 

  23. Pearce, L. R., David Komander, D. & Alessi, D. R. The nuts and bolts of AGC protein kinases. Nature Rev. Mol. Cell Biol. 11, 9–22 (2010).

    Article  CAS  Google Scholar 

  24. Dhonukshe, P. et al. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr. Biol. 17, 520–527 (2007).

    Article  CAS  Google Scholar 

  25. Kitakura, S. et al. Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23, 1920–1931 (2011).

    Article  CAS  Google Scholar 

  26. Kang, B. H., Busse, J. S. & Bednarek, S. Y. Members of the Arabidopsis dynamin-like gene family, ADL1, are essential for plant cytokinesis and polarized cell growth. Plant Cell 15, 899–913 (2003).

    Article  CAS  Google Scholar 

  27. Collings, D. A. et al. Arabidopsis dynamin-like protein DRP1A: a null mutant with widespread defects in endocytosis, cellulose synthesis, cytokinesis, and cell expansion. J. Exp. Bot. 59, 361–376 (2008).

    Article  CAS  Google Scholar 

  28. Backues, S. K., Korasick, D. A., Heese, A. & Bednarek, S. The Arabidopsis dynamin-related protein2 family is essential for gametophyte development. Plant Cell 22, 3218–3231 (2010).

    Article  CAS  Google Scholar 

  29. Fujimoto, M. et al. Arabidopsis dynamin-related proteins DRP2B and DRP1A participate together in clathrin-coated vesicle formation during endocytosis. Proc. Natl Acad. Sci. USA 107, 6094–6099 (2010).

    Article  CAS  Google Scholar 

  30. Konopka, C. A. & Bednarek, S. Y. Comparison of the dynamics and functional redundancy of the Arabidopsis dynamin-related isoforms DRP1A and DRP1C during plant development. Plant Physiol. 147, 1590–1602 (2008).

    Article  CAS  Google Scholar 

  31. Konopka, C. A., Backues, S. K. & Bednarek, S. Y. Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20, 1363–1380 (2008).

    Article  CAS  Google Scholar 

  32. Wang, C. et al. Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell 25, 499–516 (2013).

    Article  CAS  Google Scholar 

  33. Grebe, M. et al. Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr. Biol. 13, 1378–1387 (2003).

    Article  CAS  Google Scholar 

  34. Boutté, Y., Men, S. & Grebe, M. Fluorescent in situ visualization of sterols in Arabidopsis roots. Nature Protoc. 6, 446–456 (2011).

    Article  Google Scholar 

  35. Ovečka, M. et al. Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. Plant Cell 22, 2999–3019 (2010).

    Article  Google Scholar 

  36. Xu, J. & Scheres, B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17, 525–536 (2005).

    Article  CAS  Google Scholar 

  37. Fu, Y., Xu, T., Zhu, L., Wen, M. & Yang, Z. A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr. Biol. 19, 1827–1832 (2009).

    Article  CAS  Google Scholar 

  38. Sorek, N. et al. Activation status-coupled transient S acylation determines membrane partitioning of a plant Rho-related GTPase. Mol. Cell. Biol. 27, 2144–2154 (2007).

    Article  CAS  Google Scholar 

  39. Mongrand, S. et al. Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J. Biol. Chem. 279, 36277–36286 (2004).

    Article  CAS  Google Scholar 

  40. Borner, G. H. et al. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol. 137, 104–116 (2005).

    Article  CAS  Google Scholar 

  41. Minami, A. et al. Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation. Plant Cell Physiol. 50, 341–359 (2009).

    Article  CAS  Google Scholar 

  42. Frescatada-Rosa, M. et al. High lipid order of Arabidopsis cell plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function. Plant J. 80, 745–757 (2014).

    Article  CAS  Google Scholar 

  43. Souter, M. et al. Hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell 14, 1017–1031 (2002).

    Article  CAS  Google Scholar 

  44. Posé, D. et al. Identification of the Arabidopsis dry2/sqe1–5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. Plant J. 59, 63–76 (2009).

    Article  Google Scholar 

  45. Kiefer, C. S. et al. Arabidopsis AIP1–2 restricted by WER-mediated patterning modulates planar polarity. Development 142, 151–161 (2015).

    Article  CAS  Google Scholar 

  46. Grebe, M. et al. Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr. Biol. 12, 329–334 (2002).

    Article  CAS  Google Scholar 

  47. Fischer, U. et al. Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1, EIN2, and GNOM activity. Curr. Biol. 16, 2143–2149 (2006).

    Article  CAS  Google Scholar 

  48. Ikeda, Y. et al. Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nature Cell Biol. 11, 731–738 (2009).

    Article  CAS  Google Scholar 

  49. Furt, F. et al. Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane. Plant Physiol. 152, 2173–2187 (2010).

    Article  CAS  Google Scholar 

  50. Raffaele, S. et al. Remorin, solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. Plant Cell 21, 1541–1555 (2009).

    Article  CAS  Google Scholar 

  51. Keinath, N. F. et al. PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J. Biol. Chem. 285, 39140–39149 (2010).

    Article  CAS  Google Scholar 

  52. Markham, J. E. et al. Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. Plant Cell 23, 2362–2378 (2011).

    Article  CAS  Google Scholar 

  53. Mravec, J. et al. Cell plate restricted association of DRP1A and PIN proteins is required for cell polarity establishment in Arabidopsis. Curr. Biol. 21, 1055–1060 (2011).

    Article  CAS  Google Scholar 

  54. Titapiwatanakun, B. et al. ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J. 57, 27–44 (2009).

    Article  CAS  Google Scholar 

  55. Pietra, S. et al. Arabidopsis SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity. Nat. Commun. 4, 2779 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Aoyama, S.Y. Bednarek, D.W. Ehrhardt, N. Geldner, B. Scheres, N. Tsutsumi, R.E. Williamson and Z. Yang for sharing published materials. We thank the Nottingham Arabidopsis Stock Centre for providing seed stocks. A.H. and T.S. were supported by a grant from the Swedish Kempe foundations to M.G., A.H. and A.G. were supported by a ‘ShapeSystems’ project grant number 2012.0050 by the Knut & Alice Wallenberg foundation to M.G., T.S. and M.G. were supported by ERC-2010-STG Green-Lat-Pol, grant number 260699 to M.G.

Author information

Authors and Affiliations

Authors

Contributions

M.G. conceived the project. A.H., C.S., I.C.R.B., M.G., T.S. and S.P. designed experiments. A.G., A.H., C.S.K., I.C.R.B., K.B., M.G., M.Z., S.P. and T.S. performed experiments and interpreted the results. I.C.R.B., M.Z. and C.S. provided unpublished materials, discussions on experimental design and interpretation of results. M.G. and T.S. wrote the manuscript. All authors read the manuscript, edited and commented on it before submission.

Corresponding author

Correspondence to Markus Grebe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanislas, T., Hüser, A., Barbosa, I. et al. Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity. Nature Plants 1, 15162 (2015). https://doi.org/10.1038/nplants.2015.162

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing