Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1

Subjects

Abstract

In Arabidopsis the plasma membrane nitrate transceptor (transporter/receptor) NRT1.1 governs many physiological and developmental responses to nitrate. Alongside facilitating nitrate uptake, NRT1.1 regulates the expression levels of many nitrate assimilation pathway genes, modulates root system architecture, relieves seed dormancy and protects plants from ammonium toxicity. Here, we assess the functional and phenotypic consequences of point mutations in two key residues of NRT1.1 (P492 and T101). We show that the point mutations differentially affect several of the NRT1.1-dependent responses to nitrate, namely the repression of lateral root development at low nitrate concentrations, and the short-term upregulation of the nitrate-uptake gene NRT2.1, and its longer-term downregulation, at high nitrate concentrations. We also show that these mutations have differential effects on genome-wide gene expression. Our findings indicate that NRT1.1 activates four separate signalling mechanisms, which have independent structural bases in the protein. In particular, we present evidence to suggest that the phosphorylated and non-phosphorylated forms of NRT1.1 at T101 have distinct signalling functions, and that the nitrate-dependent regulation of root development depends on the phosphorylated form. Our findings add to the evidence that NRT1.1 is able to trigger independent signalling pathways in Arabidopsis in response to different environmental conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Point mutations in the NRT1.1 nitrate transceptor differentially alter the nitrate regulation of lateral root growth.
Figure 2: P492L and T101A mutations alter the auxin transport activity of NRT1.1 and auxin gradients in lateral root primordia.
Figure 3: The NRT1.1 point mutant proteins are expressed in lateral root primordia and properly addressed at the plasma membrane except for NRT1.1P492L.
Figure 4: Point mutations in the NRT1.1 nitrate transceptor differentially alter the regulation of NRT2.1 expression in roots in response to nitrogen treatments.
Figure 5: Point mutations in the NRT1.1 nitrate transceptor affect different genome-wide responses to high nitrogen provision.
Figure 6: Schematic representation of the four signalling ‘modes’ of NRT1.1.

Similar content being viewed by others

References

  1. Schachtman, D. P. Recent advances in nutrient sensing and signaling. Mol. Plant 5, 1170–1172 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Nacry, P., Bouguyon, E. & Gojon, A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370, 1–29 (2013).

    Article  CAS  Google Scholar 

  3. Little, D. Y. et al. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc. Natl Acad. Sci. USA 102, 13693–13698 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Gojon, A., Nacry, P. & Davidian, J-C. Root uptake regulation: a central process for NPS homeostasis in plants. Curr. Opin. Plant Biol. 12, 328–338 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Bouguyon, E., Gojon, A. & Nacry, P. Nitrate sensing and signaling in plants. Semin. Cell Dev. Biol. 23, 648–654 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Y-Y., Hsu, P-K. & Tsay, Y-F. Uptake, allocation and signaling of nitrate. Trends Plant Sci. 17, 458–467 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Walch-Liu, P. & Forde, B. G. Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises l-glutamate-induced changes in root architecture. Plant J. 54, 820–828 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Gojon, A. et al. Nitrate transceptor(s) in plants. J. Exp. Bot. 62, 2299–2308 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Gutierrez, R. A. Systems biology for enhanced plant nitrogen nutrition. Science 336, 1673–1675 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Léran, S. et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci. 19, 5–9 (2014).

    Article  PubMed  Google Scholar 

  11. Tsay, Y-F. et al. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72, 705–713 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Léran, S. et al. The Arabidopsis NRT1.1 is a bidirectional transporter involved in root to shoot nitrate translocation. Mol. Plant 6, 1984–1987 (2013).

    Article  PubMed  Google Scholar 

  13. Munos, S. et al. Transcript profiling in the chl1–5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell 16, 2433–2447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ho, C-H. et al. CHL1 functions as a nitrate sensor in plants. Cell 138, 1184–1194 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, R. et al. A genetic screen for nitrate regulatory mutants captures the transporter gene NRT1.1. Plant Physiol. 151, 472–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krouk, G., Tillard, P. & Gojon, A. Regulation of the high-affinity NO3 uptake system by NRT1.1-mediated NO3 demand signaling in Arabidopsis. Plant Physiol. 142, 1075–1086 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Remans, T. et al. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc. Natl Acad. Sci. USA 103, 19206–19211 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Mounier, E. et al. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant Cell Environ. 37, 162–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Krouk, G. et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell 18, 927–937 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003).

    Article  Google Scholar 

  21. Simon, S. et al. Defining the selectivity of processes along the auxin response chain: a study using auxin analogues. New Phytol. 200, 1034–1048 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, K. H. & Tsay, Y-F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22, 1005–1013 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rubin, G. et al. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21, 3567–3584 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, R. et al. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol. 136, 2512–2522 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nemhauser, J. L., Hong, F. & Chory, J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Parker, J. L. & Newstead, S. Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507, 68–72 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun, J. et al. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507, 73–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holsbeeks, I. et al. The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem. Sci. 29, 556–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Van Nuland, A. et al. Ammonium permease-based sensing mechanism for rapid activation of the protein kinase A pathway in yeast. Mol. Microbiol. 59, 1485–1505 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Lorenz, E. & Heitman, J. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J. 17, 1236–1247 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ottenschlager, I. et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad Sci. USA 100, 2987–2991 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Petrášek, J. et al. Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol. 131, 254–263 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institut National de la Recherche Agronomique (CJS PhD Fellowship to S.L. & Projet Département BAP, BAP2013-33-NITSE to B.L.), Agence Nationale de la Recherche (ANR-11-JSV6-002-01-NUTSE to B.L.), The Agropolis Foundation (RHIZOPOLIS project to A.G., E.G. and P.N.), the Région Languedoc-Roussillon (Chercheur d'Avenir to B.L.), the Grant Agency of the Czech Republic (GAP305/11/0797 to E.Z.) and the Knowledge Biobase Economy European project (KBBE-005-002 Root enhancement for crop improvement to M.P. and P.N.). The authors thank Jan Petrášek and Alexandre Martiniere-Delaunay for the help with analysis of confocal images, Véronique Santoni for sharing data on NRT1.1 phosphorylation, Gloria M. Coruzzi for providing access to transcriptome facilities and hosting E.B., Amy Marshall Colon for the help with transcriptome analyses and Nigel M. Crawford for critical reading and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.B., F.B., M.K., D.M., M.P., S.L., K.H. and P.N. performed experimental work; E.B., M.K., B.L., G.K., K.H., P.N. and A.G. performed data analysis; E.B., E.G., E.Z., P.N. and A.G. oversaw project planning; E.B., G.K., K.H., P.N. and A.G. wrote the paper.

Corresponding author

Correspondence to A. Gojon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouguyon, E., Brun, F., Meynard, D. et al. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nature Plants 1, 15015 (2015). https://doi.org/10.1038/nplants.2015.15

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing