Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Universal stress protein HRU1 mediates ROS homeostasis under anoxia

Abstract

Plant survival is greatly impaired when oxygen levels are limiting, such as during flooding or when anatomical constraints limit oxygen diffusion. Oxygen sensing in Arabidopsis thaliana is mediated by Ethylene Responsive Factor (ERF)-VII transcription factors, which control a core set of hypoxia- and anoxia-responsive genes responsible for metabolic acclimation to low-oxygen conditions. Anoxic conditions also induce genes related to reactive oxygen species (ROS). Whether the oxygen-sensing machinery coordinates ROS production under anoxia has remained unclear. Here we show that a low-oxygen-responsive universal stress protein (USP), Hypoxia Responsive Universal Stress Protein 1 (HRU1), is induced by RAP2.12 (Related to Apetala 2.12), an ERF-VII protein, and modulates ROS production in Arabidopsis. We found that HRU1 is strongly induced by submergence, but that this induction is abolished in plants lacking RAP2.12. Mutation of HRU1 through transfer DNA (T-DNA) insertion alters hydrogen peroxide production, and reduces tolerance to submergence and anoxia. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) analyses reveal that HRU1 interacts with proteins that induce ROS production, the GTPase ROP2 and the NADPH oxidase RbohD, pointing to the existence of a low-oxygen-specific mechanism for the modulation of ROS levels. We propose that HRU1 coordinates oxygen sensing with ROS signalling under anoxic conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HRU1 is a hypoxia-inducible universal stress protein.
Figure 2: Phenotypic characterization of the hru1-1 mutant.
Figure 3: HRU1 interacts with the small GTPase ROP2, RbohD and TRXh.
Figure 4: FRAP analysis of protein localization, dynamics and interactions.
Figure 5: Altered HRU1 expression affects hydrogen peroxide accumulation, gene expression and tolerance to low oxygen.

Similar content being viewed by others

References

  1. Bailey-Serres, J. & Voesenek, L. A. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313–339 (2008).

    Article  CAS  Google Scholar 

  2. Kennedy, R. A., Rumpho, M. E. & Fox, T. C. Anaerobic metabolism in plants. Plant Physiol. 100, 1–6 (1992).

    Article  CAS  Google Scholar 

  3. Ricard, B. et al. Plant metabolism under hypoxia and anoxia. Plant Physiol. Biochem. 32, 1–10 (1994).

    CAS  Google Scholar 

  4. Loreti, E., Poggi, A., Novi, G., Alpi, A. & Perata, P. A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol. 137, 1130–1138 (2005).

    Article  CAS  Google Scholar 

  5. Mustroph, A. et al. Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiol. 152, 1484–1500 (2010).

    Article  CAS  Google Scholar 

  6. Lee, S. C. et al. Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytol. 190, 457–471 (2011).

    Article  CAS  Google Scholar 

  7. Sasidharan, R. & Mustroph, A. Plant oxygen sensing is mediated by the N-end rule pathway: a milestone in plant anaerobiosis. Plant Cell. 23, 4173–4183 (2011).

    Article  CAS  Google Scholar 

  8. Gibbs, D. J. et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479, 415–418 (2011).

    Article  CAS  Google Scholar 

  9. Licausi, F. et al. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479, 419–422 (2011).

    Article  CAS  Google Scholar 

  10. Chang, R., Jang, C. J., Branco-Price, C., Nghiem, P. & Bailey-Serres, J. Transient MPK6 activation in response to oxygen deprivation and reoxygenation is mediated by mitochondria and aids seedling survival in Arabidopsis. Plant Mol. Biol. 78, 109–122 (2012).

    Article  CAS  Google Scholar 

  11. Baxter-Burrel, A., Yang, Z., Springer, P. S. & Bailey-Serres, J. RopGAP4-dependent RopGTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296, 2026–2028 (2002).

    Article  Google Scholar 

  12. Pucciariello, C., Parlanti, S., Banti, V., Novi, G. & Perata, P. Reactive oxygen species-driven transcription in Arabidopsis under oxygen deprivation. Plant Physiol. 159, 184–196 (2012).

    Article  CAS  Google Scholar 

  13. Bechtold, U. et al. Impact of chloroplastic- and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis. J. Exp. Bot. 59, 121–133 (2008).

    Article  CAS  Google Scholar 

  14. Nachin, L., Nannmark, U. & Nyström, T. Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. J. Bacteriol. 187, 6265–6272 (2005).

    Article  CAS  Google Scholar 

  15. Kvint, K., Nachin, L., Diez, A. & Nyström, T. The bacterial universal stress protein: function and regulation. Curr. Opin. Microbiol. 6, 140–145 (2003).

    Article  CAS  Google Scholar 

  16. Kerk, D., Bulgrien, J., Smith, D. W. & Gribskov, M. Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Plant Physiol. 131, 1209–1219 (2003).

    Article  CAS  Google Scholar 

  17. van Dongen, J. T., Schurr, U., Pfister, M., & Geigenberger, P. Phloem metabolism and function have to cope with low internal oxygen. Plant Physiol. 131, 1529–1543 (2003).

    Article  CAS  Google Scholar 

  18. Nachin, L., Brive, L., Persson, K. C., Svensson, P. & Nyström, T. Heterodimer formation within universal stress protein classes revealed by an in silico and experimental approach. J. Mol. Biol. 380, 340–450 (2008).

    Article  CAS  Google Scholar 

  19. Foreman, J. et al.. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442–446 (2003).

    Article  CAS  Google Scholar 

  20. Li, H., Shen, J. J., Zheng, Z. L., Lin, Y. & Yang, Z. The RopGTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol. 126, 670–684 (2001).

    Article  CAS  Google Scholar 

  21. Jones, M. A., Raymond, M. J., & Smirnoff, N. Analysis of the root hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root hair development in Arabidopsis. Plant J. 4, 83–100 (2006).

    Article  Google Scholar 

  22. Jones, M. A. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14, 763–776 (2002).

    Article  CAS  Google Scholar 

  23. Nibau, C., Wu, H. & Cheung, A. Y. Rac/RopGTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci. 11, 309–315 (2006).

    Article  CAS  Google Scholar 

  24. Yang, Z. & Ying, F. ROP/RAC GTPase signaling. Curr. Opin. Plant Biol. 10, 490–494 (2007).

    Article  CAS  Google Scholar 

  25. Sagi, M. & Fluhr, R. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141, 336–340 (2006).

    Article  CAS  Google Scholar 

  26. Wong, H. L. et al. Regulation of rice NADPH oxidase by binding of RacGTPase to its N-terminal extension. Plant Cell 19, 4022–4034 (2007).

    Article  CAS  Google Scholar 

  27. Ueoka-Nakanishi, H. et al. Thioredoxin h regulates calcium dependent protein kinases in plasma membranes. FEBS J. 280, 3220–3231 (2013).

    Article  CAS  Google Scholar 

  28. Zheng, Z. L. & Yang, Z. The RopGTPase: an emerging signaling switch in plants. Plant Mol. Biol. 44, 1–9 (2000).

    Article  CAS  Google Scholar 

  29. Marmagne, A. et al. A high content in lipid-modified peripheral proteins and integral receptor kinases features in the Arabidopsis plasma membrane proteome. Mol. Cell. Prot. 6, 1980–1996 (2007).

    Article  CAS  Google Scholar 

  30. Mitra, S. K., Gantt, J. A., Ruby, J. F., Clouse, S. D. & Goshe, M. B. Membrane proteomic analysis of Arabidopsis thaliana using alternative solubilization techniques. J. Prot. Res. 6, 1933–1950 (2007).

    Article  CAS  Google Scholar 

  31. Di Rienzo, C., Piazza, V., Gratton, E., Beltram, F. & Cardarelli, F. Probing short-range protein Brownian motion in the cytoplasm of living cells. Nature Comm. 5, 5891 (2014).

    Article  CAS  Google Scholar 

  32. Hao, H. et al. Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plant Cell 26, 1729–1745 (2014).

    Article  CAS  Google Scholar 

  33. Keller, T. et al. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10, 255–266 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Boes, N., Schreiber, K., Hartig, E., Jaensch, L. & Schobert, M. The Pseudomonas aeruginosa universal stress protein PA4352 is essential for surviving anaerobic energy stress. J. Bacteriol. 188, 6529–6538 (2006).

    Article  CAS  Google Scholar 

  35. O'Toole, R. & Williams, H. D. Universal stress proteins and Mycobacterium tuberculosis. Res. Microbiol. 154, 387–392 (2003).

    Article  CAS  Google Scholar 

  36. Loukehaich, R. et al. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J Exp. Bot. 63, 5593–5606 (2012).

    Article  CAS  Google Scholar 

  37. Maqbool, A., Zahur, M., Husnain, T. & Riazuddin, S. GUSP1 and GUSP2, two drought-responsive genes in Gossypium arboreum have homology to universal stress proteins. Plant Mol. Biol. Rep. 27, 109–114 (2009).

    Article  CAS  Google Scholar 

  38. Sauter, M., Rzewuski, G., Marwedel, T. & Lorbiecke, R. The novel ethylene-regulated gene OsUsp1 from rice encodes a member of a plant protein family related to prokaryotic universal stress proteins. J. Exp. Bot. 53, 2325–2331 (2002).

    Article  CAS  Google Scholar 

  39. Subbaiah, C. C., Bush, D. S. & Sachs, M. M. Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. Plant Cell 6, 1747–1762 (1994).

    Article  CAS  Google Scholar 

  40. Subbaiah, C. C., Zhang, J. & Sachs, M. M. Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings. Plant Physiol. 105, 369–376 (1994).

    Article  CAS  Google Scholar 

  41. Sedbrook, J. C., Kronebusch, P. J., Borisy, G. G., Trewavas, A. J. & Masson, P. H. Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia in Arabidopsis thaliana seedlings. Plant Physiol. 111, 243–257 (1996).

    Article  CAS  Google Scholar 

  42. Kobayashi, M. et al. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19, 1065–1080 (2007).

    Article  CAS  Google Scholar 

  43. Hann, L. W. et al. Regulation of rice NADPH oxidase by binding of RacGTPase to its N-terminal extension. Plant Cell 19, 4022–4034 (2007).

    Article  Google Scholar 

  44. van Dongen, J. T. & Licausi, F. Oxygen sensing and signaling. Annu. Rev. Plant Biol. 66, 345–367 (2015).

    Article  CAS  Google Scholar 

  45. Mithran, M., Paparelli, E., Novi, G., Perata, P. & Loreti, E. Analysis of the role of the pyruvate decarboxylase gene family in Arabidopsis thaliana under low-oxygen conditions. Plant Biol. 16, 28–23 (2014).

    Article  CAS  Google Scholar 

  46. Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protoc. 215, 65–72 (2007).

    Google Scholar 

  47. Perata, P., Matsukura, C., Vernieri, P. & Yamaguchi, J. Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9, 2197–2208 (1997).

    Article  CAS  Google Scholar 

  48. Arvidsson, S., Kwasniewski, M., Riano-Pachon, D. M. & Mueller-Roeber, B. QuantPrime – a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinform. 9, 465 (2008).

    Article  Google Scholar 

  49. Loreti, E., Alpi, A. & Perata, P. Glucose and disaccharide-sensing mechanisms modulate the expression of alpha-amylase in barley embryos. Plant Physiol. 123, 939–948 (2000).

    Article  CAS  Google Scholar 

  50. Nakagami, H., Soukupová, H., Schikora, A., Zárský, V. & Hirt, H. A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol. Chem. 281, 38697–38704 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Bailey-Serres for reviewing an early version of this manuscript, A. Galli for helpful suggestions about the Y2H assay and C. Kiferle for helpful assistance in data analysis. We acknowledge Z. Yang (University of California, Riverside) for providing us with the plasmid carrying the coding sequence for the RIC1-Maltose Binding Protein (MBP) fusion protein.

Author information

Authors and Affiliations

Authors

Contributions

S.G., E.L., L.B., S.P., C.P. and F.L. performed the molecular biology experiments, Y2H, BiFC and split-luciferase assays. G.N. and S.P. obtained the mutants and performed the phenotypic characterization of the mutants and transgenic lines. G.N. performed the submergence and hypoxia tolerance assays. E.L. and P.P. performed the transient expression analysis in Nicotiana. V.B. and C.P. performed the ROP pull-down assays. F.C. designed, performed and analysed the FRAP experiments. P.P., S.G. and E.L. designed the experiments. P.P. and E.L. wrote the manuscript. All authors discussed and commented on the content of the paper.

Corresponding author

Correspondence to Pierdomenico Perata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzali, S., Loreti, E., Cardarelli, F. et al. Universal stress protein HRU1 mediates ROS homeostasis under anoxia. Nature Plants 1, 15151 (2015). https://doi.org/10.1038/nplants.2015.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing