Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize

Abstract

Pre-mitotic establishment of polarity is a key event in the preparation of mother cells for asymmetric cell divisions that produce daughters of distinct fates, and ensures correct cellular patterning of tissues and eventual organ function. Previous work has shown that two receptor-like kinases, PANGLOSS2 (PAN2) and PAN1, and the small GTPase RHO GTPASE OF PLANTS (ROP) promote mother cell polarity and subsequent division asymmetry in developing maize stomata. PAN proteins become polarized prior to asymmetric cell division, however, the mechanism of this polarization is unknown. Here we show that the SCAR/WAVE regulatory complex, which activates the actin-nucleating ARP2/3 complex, is the first known marker of polarity in this asymmetric division model and is required for PAN polarization. These findings implicate actin, and specifically branched actin networks, in PAN polarization and asymmetric cell division.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synergistic relationship between brk and pan mutants.
Figure 2: BRK1–CFP localization and interaction with other SCAR complex members.
Figure 3: BRK1–CFP becomes polarized prior to PAN2–YFP and PAN1–YFP.
Figure 4: Brk1 and Brk3 are required for PAN polarization, but Pan1 and Pan2 are not required for BRK1 polarization.
Figure 5: SMC polarization timeline.
Figure 6: Model of SMC polarization.

References

  1. Dow, G. J. & Bergmann, D. C. Patterning and processes: how stomatal development defines physiological potential. Curr. Opin. Plant Biol. 21, 67–74 (2014).

    Article  CAS  Google Scholar 

  2. Pillitteri, L. J. & Torii, K. U. Mechanisms of stomatal development. Annu. Rev. Plant Biol. 63, 591–614 (2012).

    Article  CAS  Google Scholar 

  3. Facette, M. R. & Smith, L. G. Division polarity in developing stomata. Curr. Opin. Plant Biol. 15, 585–592 (2012).

    Article  Google Scholar 

  4. Stebbins, G. L. & Shah, S. S. Developmental studies of cell differentiation in the epidermis of monocotyledons: II. Cytological features of stomatal development in the Gramineae. Dev. Biol. 2, 477–500 (1960).

    Article  Google Scholar 

  5. Gallagher, K. & Smith, L. G. Roles for polarity and nuclear determinants in specifying daughter cell fates after an asymmetric cell division in the maize leaf. Curr. Biol. 10, 1229–1232 (2000).

    Article  CAS  Google Scholar 

  6. Cartwright, H. N., Humphries, J. A. & Smith, L. G. PAN1: A receptor-like protein that promotes polarization of an asymmetric cell division in maize. Science 323, 649–651 (2009).

    Article  CAS  Google Scholar 

  7. Zhang, X. et al. Identification of PAN2 by quantitative proteomics as a leucine-rich repeat-receptor-like kinase acting upstream of PAN1 to polarize cell division in maize. Plant Cell 24, 4577–4589 (2012).

    Article  CAS  Google Scholar 

  8. Humphries, J. A. et al. ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize. Plant Cell 23, 2273–2284 (2011).

    Article  CAS  Google Scholar 

  9. Frank, M. J., Cartwright, H. N. & Smith, L. G. Three Brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis. Development 130, 753–762 (2003).

    Article  CAS  Google Scholar 

  10. Frank, M. J. & Smith, L. G. A small, novel protein highly conserved in plants and animals promotes the polarized growth and division of maize leaf epidermal cells. Curr. Biol. 12, 849–853 (2002).

    Article  CAS  Google Scholar 

  11. Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17, 6932–6941 (1998).

    Article  CAS  Google Scholar 

  12. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    Article  CAS  Google Scholar 

  13. Basu, D., El-Assal Sel, D., Le, J., Mallery, E. L. & Szymanski, D. B. Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development 131, 4345–4355 (2004).

    Article  CAS  Google Scholar 

  14. Deeks, M. J., Kaloriti, D., Davies, B ., Malhó, R. & Hussey, P. J. Arabidopsis NAP1 Is essential for Arp2/3-dependent trichome morphogenesis. Curr. Biol. 14, 1410–1414 (2004).

    Article  CAS  Google Scholar 

  15. Dyachok, J. et al. SCAR mediates light-induced root elongation in Arabidopsis through photoreceptors and proteasomes. Plant Cell 23, 3610–3626 (2011).

    Article  CAS  Google Scholar 

  16. Dyachok, J. et al. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. Mol. Plant 1, 990–1006 (2008).

    Article  CAS  Google Scholar 

  17. Djakovic, S., Dyachok, J., Burke, M., Frank, M. J. & Smith, L. G. BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 133, 1091–1100 (2006).

    Article  CAS  Google Scholar 

  18. Le, J., Mallery, E. L., Zhang, C., Brankle, S. & Szymanski, D. B. Arabidopsis BRICK1/HSPC300 is an essential WAVE-complex subunit that selectively stabilizes the Arp2/3 Activator SCAR2. Curr. Biol. 16, 895–901 (2006).

    Article  CAS  Google Scholar 

  19. Li, S., Blanchoin, L., Yang, Z. & Lord, E. M. The putative Arabidopsis Arp2/3 complex controls leaf cell morphogenesis. Plant Physiol. 132, 2034–2044 (2003).

    Article  CAS  Google Scholar 

  20. Mathur, J., Mathur, N., Kernebeck, B. & Hulskamp, M. Mutations in ACTIN-RELATED PROTEINS 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15, 1632–1645 (2003).

    Article  CAS  Google Scholar 

  21. El-Din El-Assal, S., Le, J., Basu, D., Mallery, E. L. & Szymanski, D. B. DISTORTED2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. Plant J. 38, 526–538 (2004).

    Article  Google Scholar 

  22. Duan, Q., Kita, D., Li, C., Cheung, A. Y. & Wu, H.-M. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc. Natl Acad. Sci. USA 107, 17821–17826 (2010).

    Article  CAS  Google Scholar 

  23. Xu, T. et al. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025–1028 (2014).

    Article  CAS  Google Scholar 

  24. Zhang, Y. & McCormick, S. A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 104, 18830–18835 (2007).

    Article  CAS  Google Scholar 

  25. Zhao, X.-Y. et al. The juxtamembrane and carboxy-terminal domains of Arabidopsis PRK2 are critical for ROP-induced growth in pollen tubes. J. Exp. Bot. 64, 5599–5610 (2013).

    Article  CAS  Google Scholar 

  26. Gachomo, E. W., Jno Baptiste, L., Kefela, T., Saidel, W. M. & Kotchoni, S. O. The Arabidopsis CURVY1 (CVY1) gene encoding a novel receptor-like protein kinase regulates cell morphogenesis, flowering time and seed production. BMC Plant Biol. 14, 221 (2014).

    Article  Google Scholar 

  27. Fu, Y., Li, H. & Yang, Z. The ROP2 GTPase controls the formation of cortical fine F-Actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14, 777–794 (2002).

    Article  CAS  Google Scholar 

  28. El-Assal, S. E.-D., Le, J., Basu, D., Mallery, E. L. & Szymanski, D. B. Arabidopsis GNARLED encodes a NAP125 homolog that positively regulates ARP2/3. Curr. Biol. 14, 1405–1409 (2004).

    Article  CAS  Google Scholar 

  29. Kitamura, T. et al. Molecular cloning of p125Nap1, a protein that associates with an SH3 Domain of Nck. Biochem. Biophys. Res. Commun. 219, 509–514 (1996).

    Article  CAS  Google Scholar 

  30. Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M. & Kirschner, M. W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790–793 (2002).

    Article  CAS  Google Scholar 

  31. Zhang, C. et al. The endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf. Plant Physiol. 162, 689–706 (2013).

    Article  CAS  Google Scholar 

  32. Giannoutsou, E., Apostolakos, P. & Galatis, B. Actin filament-organized local cortical endoplasmic reticulum aggregations in developing stomatal complexes of grasses. Protoplasma 248, 373–390 (2011).

    Article  Google Scholar 

  33. Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009).

    Article  CAS  Google Scholar 

  34. Jörgens, C. I., Grünewald, N., Hülskamp, M. & Uhrig, J. F. A role for ABIL3 in plant cell morphogenesis. Plant J. 62, 925–935 (2010).

    PubMed  Google Scholar 

  35. Uhrig, J. F. et al. The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development 134, 967–977 (2007).

    Article  CAS  Google Scholar 

  36. Derivery, E. et al. Free Brick1 is a trimeric precursor in the assembly of a functional wave complex. PLoS ONE 3, e2462 (2008).

    Article  Google Scholar 

  37. Kunda, P., Craig, G., Dominguez, V. & Baum, B. Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr. Biol. 13, 1867–1875 (2003).

    Article  CAS  Google Scholar 

  38. Blagg, S. L., Stewart, M., Sambles, C. & Insall, R. H. PIR121 regulates pseudopod dynamics and SCAR activity in Dictyostelium. Curr. Biol. 13, 1480–1487 (2003).

    Article  CAS  Google Scholar 

  39. Ibarra, N., Blagg, S. L., Vazquez, F. & Insall, R. H. Nap1 regulates Dictyostelium cell motility and adhesion through SCAR-dependent and -independent pathways. Curr. Biol. 16, 717–722 (2006).

    Article  CAS  Google Scholar 

  40. Linkner, J., Witte, G., Stradal, T., Curth, U. & Faix, J. High-resolution X-Ray structure of the trimeric Scar/WAVE-Complex Precursor Brk1. PLoS ONE 6, e21327 (2011).

    Article  CAS  Google Scholar 

  41. Sutimantanapi, D., Pater, D. & Smith, L. G. Divergent roles for maize PAN1 and PAN2 receptor-like proteins in cytokinesis and cell morphogenesis. Plant Physiol. 164, 1905–1917 (2014).

    Article  CAS  Google Scholar 

  42. Mohanty, A. et al. Advancing cell biology and functional genomics in maize using fluorescent protein-tagged lines. Plant Physiol. 149, 601–605 (2009).

    Article  CAS  Google Scholar 

  43. Lebensohn, A. M. & Kirschner, M. W. Activation of the WAVE complex by coincident signals controls actin assembly. Mol. Cell 36, 512–524 (2009).

    Article  CAS  Google Scholar 

  44. Chen, Z. et al. Structure and control of the actin regulatory WAVE complex. Nature 468, 533–538 (2010).

    Article  CAS  Google Scholar 

  45. Geldner, N., Friml, J., Stierhof, Y.-D., Jurgens, G. & Palme, K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428 (2001).

    Article  CAS  Google Scholar 

  46. Lin, D. et al. A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots. Curr. Biol. 22, 1319–1325 (2012).

    Article  CAS  Google Scholar 

  47. Nagawa, S. et al. ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol. 10, e1001299 (2012).

    Article  CAS  Google Scholar 

  48. Li, G. et al. Rice actin-binding protein RMD is a key link in the auxin–actin regulatory loop that controls cell growth. Proc. Natl Acad. Sci. USA 111, 10377–10382 (2014).

    Article  CAS  Google Scholar 

  49. Chen, B. et al. The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 156, 195–207 (2014).

    Article  CAS  Google Scholar 

  50. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nature Meth. 9, 676–682 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kaiyue Deng for collecting complementation data in Supplementary Fig. 2 and the BICD101 class of 2009 at UC San Diego for sequencing brk3 alleles. This work was supported by NSF grants IOS-1147265 to LGS, NSF-1027446 to AWS, and a New Scholar Award from the Ellison Medical Foundation to EJB.

Author information

Authors and Affiliations

Authors

Contributions

M.R.F. and L.G.S. planned the experiments. M.R.F., Y.P., D.S., and H.N.C. performed the microscopy. M.R.F. performed the co-IP/western blots and M.R.F., B.Y., and E.J.B. performed the co-IP/MS. A.L. and A.W.S. made the –CFP and –YFP constructs and supplied transgenic plants. M.R.F., Y.P. and L.G.S. analysed the data. M.R.F. wrote the manuscript with input from other authors.

Corresponding authors

Correspondence to Michelle R. Facette or Laurie G. Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Facette, M., Park, Y., Sutimantanapi, D. et al. The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize. Nature Plants 1, 14024 (2015). https://doi.org/10.1038/nplants.2014.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2014.24

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing