Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET

Abstract

The ability to build structures with atomic precision is one of the defining features of nanotechnology. Achieving true atomic-level functionality, however, requires the ability to control the wavefunctions of individual atoms. Here, we investigate an approach that could enable just that. By collecting and analysing transport spectra of a single donor atom in the channel of a silicon FinFET, we present experimental evidence for the emergence of a new type of hybrid molecule system. Our experiments and simulations suggest that the transistor’s gate potential can be used to control the degree of hybridization of a single electron donor state between the nuclear potential of its donor atom and a nearby quantum well. Moreover, our theoretical analysis enables us to determine the species of donor (arsenic) implanted into each device as well as the degree of confinement imposed by the gate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometry and electrical characteristics of a single donor located in the channel of a FinFET device.
Figure 2: Excited-state spectroscopy data of single gated donors.
Figure 3: NEMO 3D (tight-binding) simulations of the gated donor eigenstates.
Figure 4: Local electric field F versus donor depth d of the As donors below the Si–SiO2 interface as predicted by a fit to the tight-binding model, as also shown in Table 1.

Similar content being viewed by others

References

  1. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  Google Scholar 

  2. Vrijen, R. et al. Electron-spin-resonance transistors for quantum computing in silicon–germanium heterostructures. Phys. Rev. A 62, 012306 (2000).

    Article  ADS  Google Scholar 

  3. Ruess, F. et al. Realization of atomically controlled dopant devices in silicon. Small 3, 563–567 (2007).

    Article  Google Scholar 

  4. Jamieson, D. N. et al. Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions. Appl. Phys. Lett. 86, 202101 (2005).

    Article  ADS  Google Scholar 

  5. Hollenberg, L. C. L. et al. Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B 69, 113301 (2004).

    Article  ADS  Google Scholar 

  6. Hollenberg, L. C. L., Greentree, A. D., Fowler, A. G. & Wellard, C. J. Two-dimensional architectures for donor-based quantum computing. Phys. Rev. B 74, 045311 (2006).

    Article  ADS  Google Scholar 

  7. Shinada, T., Okamoto, S., Kobayashi, T. & Ohdomari, I. Enhancing semiconductor device performance using ordered dopant arrays. Nature 437, 1128–1131 (2005).

    Article  ADS  Google Scholar 

  8. Huebl, H. et al. Phosphorus donors in highly strained silicon. Phys. Rev. Lett. 97, 166402 (2006).

    Article  ADS  Google Scholar 

  9. Andresen, S. E. S. et al. Charge state control and relaxation in an atomically doped silicon device. Nano Lett. 7, 2000–2003 (2007).

    Article  ADS  Google Scholar 

  10. Stegner, A. R. et al. Electrical detection of coherent 31P spin quantum states. Nature Phys. 2, 835–838 (2006).

    Article  ADS  Google Scholar 

  11. Testolin, M. J., Hill, C. D., Wellard, C. J. & Hollenberg, L. C. L. Robust controlled-NOT gate in the presence of large fabrication-induced variations of the exchange interaction strength. Phys. Rev. A. 76, 012302 (2007).

    Article  ADS  Google Scholar 

  12. Calderòn, M. J., Koiller, B., Hu, X. & Das Sarma, S. Quantum control of donor electrons at the Si/SiO2 interface. Phys. Rev. Lett. 96, 096802 (2006).

    Article  ADS  Google Scholar 

  13. Larionov, A. A., Fedechkin, L. E., Kokin, A. A. & Valiev, K. A. The nuclear magnetic resonance spectrum of 31P donors in a silicon quantum computer. Nanotechnology 11, 392–396 (2000).

    Article  ADS  Google Scholar 

  14. Wellard, C. J., Hollenberg, L. C. L. & Pakes, C. I. Single-qubit operations on the Kane quantum computer. Nanotechnology 13, 570–575 (2002).

    Article  ADS  Google Scholar 

  15. Kettle, L. M. et al. Numerical study of hydrogenic effective mass theory for an impurity P donor in Si in the presence of an electric field and interfaces. Phys. Rev. B 68, 75317 (2003).

    Article  ADS  Google Scholar 

  16. Smit, G. D. J., Rogge, S., Caro, J. & Klapwijk, T. M. Stark effect in shallow impurities in Si. Phys. Rev. B 70, 035206 (2004).

    Article  ADS  Google Scholar 

  17. Wellard, C. J. & Hollenberg, L. C. L. Donor electron wavefunctions for phosphorus in silicon: Beyond effective-mass theory. Phys. Rev. B 72, 085202 (2005).

    Article  ADS  Google Scholar 

  18. Friessen, M. Theory of the Stark effect for P donors in Si. Phys. Rev. Lett. 94, 186403 (2005).

    Article  ADS  Google Scholar 

  19. Debernardi, A., Baldereschi, A. & Fanciulli, A. Computation of the Stark effect in P impurity states in silicon. Phys. Rev. B 74, 035202 (2006).

    Article  ADS  Google Scholar 

  20. Bradbury, F. R. et al. Stark tuning of donor electron spins in silicon. Phys. Rev. Lett. 97, 176404 (2006).

    Article  ADS  Google Scholar 

  21. Hui, H. T. Numerical method for determination of the NMR frequency of the single-qubit operation in a silicon-based solid-state quantum computer. Phys. Rev. B 74, 195309 (2006).

    Article  ADS  Google Scholar 

  22. Rahman, R. et al. High precision quantum control of single donor spins in silicon. Phys. Rev. Lett. 99, 036403 (2007).

    Article  ADS  Google Scholar 

  23. Martins, A. S., Capaz, R. B. & Koiller, B. Electric-field control and adiabatic evolution of shallow donor impurities in silicon. Phys. Rev. B 69, 085320 (2004).

    Article  ADS  Google Scholar 

  24. Calderòn, M. J., Koiller, B. & Das Sarma, S. External field control of donor electron exchange at the Si/SiO2 interface. Phys. Rev. B 75, 125311 (2007).

    Article  ADS  Google Scholar 

  25. Asenov, A. Random dopant induced threshold voltage lowering and fluctuations in sub 50 nm MOSFETs: A statistical 3D ‘atomistic’ simulation study. Nanotechnology 10, 153–158 (1999).

    Article  ADS  Google Scholar 

  26. Calvet, L. E., Wheeler, R. G. & Reed, M. A. Observation of the linear Stark effect in a single acceptor in Si. Phys. Rev. Lett. 98, 096805 (2007).

    Article  ADS  Google Scholar 

  27. Sellier, H. et al. Transport spectroscopy of a single dopant in a gated silicon nanowire. Phys. Rev. Lett. 97, 206805 (2006).

    Article  ADS  Google Scholar 

  28. Hofheinz, M. et al. Individual charge traps in silicon nanowires. Eur. Phys. J. B 54, 299307 (2006).

    Article  Google Scholar 

  29. Rooyackers, R. et al. Doubling or Quadrupling MuGFET Fin Integration Scheme with Higher Pattern Fidelity, Lower CD Variation and Higher Layout Efficiency 993–996 (IEDM Tech. Dig., 2006).

    Google Scholar 

  30. Neophytou, N., Paul, A., Lundstrom, M. S. & Klimeck, G. Proc. 12th Int. Conf. on Simulation of Semiconductor Devices and Processes (SISPAD), Vienna Austria, September 25–27 (2007).

    Google Scholar 

  31. Sellier, H. et al. Subthreshold channels at the edges of nanoscale triple-gate silicon transistors. Appl. Phys. Lett. 90, 073502 (2007).

    Article  ADS  Google Scholar 

  32. Kasnavi, R. et al. Characterization of arsenic dose loss at the Si/SiO2 interface. J. Appl. Phys. 87, 2255 (2000).

    Article  ADS  Google Scholar 

  33. Kouwenhoven, L. P. et al. in Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schn, G.) (Kluwer, Dordrecht, 1997).

    Book  Google Scholar 

  34. Schleser, R. et al. Cotunneling-mediated transport through excited states in the Coulomb-blockade regime. Phys. Rev. Lett. 94, 206805 (2005).

    Article  ADS  Google Scholar 

  35. Björk, M. T. et al. Few-electron quantum dots in nanowires. Nano Lett. 4, 1621–1625 (2004).

    Article  ADS  Google Scholar 

  36. Sze, S. Physics of Semiconductor Devices 2nd edn 397 (Wiley, New York, 1981).

    Google Scholar 

  37. Klimeck, G., Oyafuso, F., Boykin, T. B., Bowen, R. C. & von Allmen, P. Development of a nanoelectronic 3D (NEMO 3D) simulator for multimillion atom simulations and its application to alloyed quantum dots. Comput. Modeling Eng. Sci. 3, 601–642 (2002).

    MATH  Google Scholar 

  38. Klimeck, G. et al. Atomistic simulation of realistically sized nanodevices using NEMO 3D: Part I—models and benchmarks. IEEE Trans. Electron Dev. 54, 2079–2089 (2007).

    Article  ADS  Google Scholar 

  39. Bayer, M. et al. Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001).

    Article  ADS  Google Scholar 

  40. Ramdas, A. K. & Rodriguez, S. Spectroscopy of the solid-state analogues of the hydrogen atom: Donors and acceptors in semiconductors. Rep. Prog. Phys. 44, 1297–1387 (1981).

    Article  ADS  Google Scholar 

  41. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  ADS  Google Scholar 

  42. Vandersypen, L. M. K. et al. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001).

    Article  ADS  Google Scholar 

  43. Xiong, W., Park, J. W. & Colinge, J. P. Corner effect in multiple-gate SOI MOSFETs, SOI Conf., 2003. IEEE Int., 111–113 (2003).

Download references

Acknowledgements

This project is supported by the Dutch Foundation for Fundamental Research on Matter (FOM), the Australian Research Council, the Australian Government, the U.S. National Security Agency (NSA) and the Army Research Office (ARO) under Contract No. W911NF-04-1-0290. Part of this work was done at JPL, Caltech under a contract with NASA. NCN/nanohub.org computational resources were used. We thank P. E. Rutten and D. S. Ebert for their contribution.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were carried out at Delft University of Technology (G.P.L., J.C., S.R.) with devices fabricated by IMEC (N.C., S.B.); modelling was done at University of Melbourne (C.J.W., L.C.L.H.) and Purdue University (R.R., I.W., G.K.).

Corresponding author

Correspondence to G. P. Lansbergen.

Supplementary information

Supplementary Information

Supplementary Material and Supplementary Figure 1 (PDF 248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lansbergen, G., Rahman, R., Wellard, C. et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nature Phys 4, 656–661 (2008). https://doi.org/10.1038/nphys994

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys994

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing