Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oscillations and interactions of dark and dark–bright solitons in Bose–Einstein condensates

Abstract

Solitons are among the most distinguishing fundamental excitations in a wide range of nonlinear systems such as water in narrow channels, high-speed optical communication, molecular biology and astrophysics. Stabilized by a balance between spreading and focusing, solitons are wave packets that share some exceptional generic features such as form stability and particle-like properties. Ultracold quantum gases represent very pure and well-controlled nonlinear systems, therefore offering unique possibilities to study soliton dynamics. Here, we report on the observation of long-lived dark and dark–bright solitons with lifetimes of up to several seconds as well as their dynamics in highly stable optically trapped 87Rb Bose–Einstein condensates. In particular, our detailed studies of dark and dark–bright soliton oscillations reveal the particle-like nature of these collective excitations for the first time. In addition, we discuss the collision between these two types of solitary excitation in Bose–Einstein condensates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of dark-soliton generation.
Figure 2: Dark-soliton oscillations in a trapped BEC.
Figure 3: Creation and oscillation of a dark–bright soliton.
Figure 4: Collision of a dark and a dark–bright soliton.

Similar content being viewed by others

References

  1. Zabusky, N. J. & Kruskal, M. D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1967).

    Article  ADS  Google Scholar 

  2. Zabusky, N. J. Solitons and bound states of the time-independent Schrödinger equation. Phys. Rev. 168, 124–128 (1968).

    Article  ADS  Google Scholar 

  3. Strecker, K. E., Partridge, G. B., Truscott, A. G. & Hulet, R. G. Formation and propagation of matter-wave soliton trains. Nature 417, 150–153 (2002).

    Article  ADS  Google Scholar 

  4. Khaykovich, L. et al. Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002).

    Article  ADS  Google Scholar 

  5. Cornish, S. L., Thompson, S. T. & Wieman, C. E. Formation of bright matter-wave solitons during the collapse of attractive Bose–Einstein condensates. Phys. Rev. Lett. 96, 170401 (2006).

    Article  ADS  Google Scholar 

  6. Eiermann, B. et al. Dispersion management for atomic matter waves. Phys. Rev. Lett. 91, 060402 (2003).

    Article  ADS  Google Scholar 

  7. Eiermann, B. et al. Bright Bose–Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett. 92, 230401 (2004).

    Article  ADS  Google Scholar 

  8. Burger, S. et al. Dark solitons in Bose–Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999).

    Article  ADS  Google Scholar 

  9. Denschlag, J. et al. Generating solitons by phase engineering of a Bose–Einstein condensate. Science 287, 97–101 (2000).

    Article  ADS  Google Scholar 

  10. Anderson, B. et al. Watching dark solitons decay into vortex rings in a Bose–Einstein condensate. Phys. Rev. Lett. 86, 2926–2929 (2001).

    Article  ADS  Google Scholar 

  11. Reinhardt, W. P. & Clark, C. W. Soliton dynamics in the collisions of Bose–Einstein condensates: An analogue of the Josephson effect. J. Phys. B 30, L785–L789 (1997).

    Article  ADS  Google Scholar 

  12. Jackson, B., Kavoulakis, G. M. & Pethick, C. J. Solitary waves in clouds of Bose–Einstein condensed atoms. Phys. Rev. A 58, 2417–2422 (1998).

    Article  ADS  Google Scholar 

  13. Feder, D. L., Pindzola, M. S., Collins, L. A., Schneider, B. I. & Clark, C. W. Dark-soliton states of Bose–Einstein condensates in anisotropic traps. Phys. Rev. A 62, 053606 (2000).

    Article  ADS  Google Scholar 

  14. Brand, J. & Reinhardt, W. P. Solitonic vortices and the fundamental modes of the snake instability: Possibility of observation in the gaseous Bose–Einstein condensate. Phys. Rev. A 65, 043612 (2002).

    Article  ADS  Google Scholar 

  15. Muryshev, A. E., van Linden van den Heuvell, H. B. & Shlyapnikov, G. V. Stability of standing matter waves in a trap. Phys. Rev. A 60, R2665–R2668 (1999).

    Article  ADS  Google Scholar 

  16. Busch, Th. & Anglin, J. R. Motion of dark solitons in trapped Bose–Einstein condensates. Phys. Rev. Lett. 84, 2298–2301 (2000).

    Article  ADS  Google Scholar 

  17. Theocharis, G., Kevrekidis, P. G., Oberthaler, M. K. & Frantzeskakis, D. J. Dark matter-wave solitons in the dimensionality crossover. Phys. Rev. A 76, 045601 (2007).

    Article  ADS  Google Scholar 

  18. Jackson, B., Proukakis, N. P. & Barenghi, C. F. Dark-soliton dynamics in Bose–Einstein condensates at finite temperature. Phys. Rev. A 75, 051601 (2007).

    Article  ADS  Google Scholar 

  19. Fedichev, P. O., Muryshev, A. E. & Shlyapnikov, G. V. Dissipative dynamics of a kink state in a Bose-condensed gas. Phys. Rev. A 60, 3220–3224 (1999).

    Article  ADS  Google Scholar 

  20. Muryshev, A., Shlyapnikov, G. V., Ertmer, W., Sengstock, K. & Lewenstein, M. Dynamics of dark solitons in elongated Bose–Einstein condensates. Phys. Rev. Lett. 89, 110401 (2002).

    Article  ADS  Google Scholar 

  21. Carr, L. D., Brand, J., Burger, S. & Sanpera, A. Dark-soliton creation in Bose–Einstein condensates. Phys. Rev. A 63, 051601 (2001).

    Article  ADS  Google Scholar 

  22. Burger, S., Carr, L. D., Öhberg, P., Sengstock, K. & Sanpera, A. Generation and interaction of solitons in Bose–Einstein condensates. Phys. Rev. A 65, 043611 (2002).

    Article  ADS  Google Scholar 

  23. Konotop, V. V. & Pitaevskii, L. Landau dynamics of a grey soliton in a trapped condensate. Phys. Rev. Lett. 93, 240403 (2004).

    Article  ADS  Google Scholar 

  24. Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation (Oxford Science Publications, Oxford, 2003).

    MATH  Google Scholar 

  25. Kivshar, Y. S. & Luther-Davies, B. Dark optical solitons: Physics and applications. Phys. Rep. 298, 81–197 (1998).

    Article  ADS  Google Scholar 

  26. Tsuzuki, T. Nonlinear waves in the Pitaevskii-Gross equation. J. Low Temp. Phys. 4, 441–457 (1971).

    Article  ADS  Google Scholar 

  27. Zakharov, V. E. & Shabat, A. B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62 (1972).

    ADS  MathSciNet  Google Scholar 

  28. Dobrek, Ł. et al. Optical generation of vortices in trapped Bose–Einstein condensates. Phys. Rev. A 60, R3381–R3384 (1999).

    Article  ADS  Google Scholar 

  29. Parker, N. G., Proukakis, N. P., Leadbeater, M. & Adams, C. S. Soliton-sound interactions in quasi-one-dimensional Bose–Einstein condensates. Phys. Rev. Lett. 90, 220401 (2003).

    Article  ADS  Google Scholar 

  30. Boyer, V. et al. Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator. Phys. Rev. A 73, 031402 (2006).

    Article  ADS  Google Scholar 

  31. Dum, R., Cirac, J. I., Lewenstein, M. & Zoller, P. Creation of dark solitons and vortices in Bose–Einstein condensates. Phys. Rev. Lett. 80, 2972–2975 (1998).

    Article  ADS  Google Scholar 

  32. Busch, Th. & Anglin, J. R. Dark–bright solitons in inhomogeneous Bose–Einstein condensates. Phys. Rev. Lett. 87, 010401 (2001).

    Article  ADS  Google Scholar 

  33. Weller, A. et al. Experimental observation of oscillating and interacting matter wave dark solitons. Preprint at <http://arxiv.org/abs/0803.4352v1>.

  34. Kronjäger, J., Becker, C., Navez, P., Bongs, K. & Sengstock, K. Magnetically tuned spin dynamics resonance. Phys. Rev. Lett. 97, 110404 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft DFG for financial support within the Forschergruppe FOR801 and the GRK 1355. K.B. thanks the EPSRC for financial support through grant EP/E036473/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Sengstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, C., Stellmer, S., Soltan-Panahi, P. et al. Oscillations and interactions of dark and dark–bright solitons in Bose–Einstein condensates. Nature Phys 4, 496–501 (2008). https://doi.org/10.1038/nphys962

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys962

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing