Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of the electronic excitation spectrum with strongly diminishing hole density in superconducting Bi2Sr2CaCu2O8+δ

Abstract

Coulomb interactions between the carriers may provide the mechanism for enhanced unconventional superconductivity in the copper oxides. However, they simultaneously cause inelastic quasiparticle scattering that can destroy it. Understanding the evolution of this balance with doping is crucial because it is responsible for the rapidly diminishing critical temperature as the hole density p is reduced towards the Mott insulating state. Here, we use tunnelling spectroscopy to measure the T→0 spectrum of electronic excitations N(E) over a wide range of hole density p in superconducting Bi2Sr2CaCu2O8+δ. We introduce a parameterization for N(E) based on a particle–hole symmetric anisotropic energy gap Δ(k)=Δ1(cos(kx)−cos(ky))/2 plus an inelastic scattering rate that varies linearly with energy Γ2(E)=α E. We demonstrate that this form of N(E) enables successful fitting of differential tunnelling conductance spectra throughout much of the Bi2Sr2CaCu2O8+δ phase diagram. We find that Δ1 values rise with falling p along the familiar trajectory of excitations to the ‘pseudogap’ energy, whereas the energy-dependent inelastic scattering rate Γ2(E)=α E seems to be an intrinsic property of the electronic structure and rises steeply for p<16%. Such diverging inelastic scattering may play a key role in suppression of superconductivity in the copper oxides as the Mott insulating state is approached.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretical effect of Γ2=α E inelastic scattering on the density of states N(E).
Figure 2: Fits of equation (2) N(E) to the average g(V) spectrum for each gap magnitude.
Figure 3: Correlations between spatial arrangements of Δpp, Δ1, α and Γ2* versus hole density p.
Figure 4: Doping dependence of spatial arrangements of Δ1(r) normalized by mean value of Δ1.
Figure 5: Spatial arrangements of kink energy Δ0(r) that separates homogeneous from heterogeneous electronic structure.
Figure 6: Local and global relationships between α and Δ1 plus ‘phase diagram’ of 〈Δ1〉, 〈Δ0〉 and 〈Γ2*〉.

Similar content being viewed by others

References

  1. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    Article  ADS  Google Scholar 

  2. Balatsky, A. V., Vekhter, I. & Zhu, J. X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

    Article  ADS  Google Scholar 

  3. Hussey, N. E. Low-energy quasiparticles in high-Tc cuprates. Adv. Phys. 51, 1685–1771 (2002).

    Article  ADS  Google Scholar 

  4. Fischer, O., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007).

    Article  ADS  Google Scholar 

  5. Ørenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000).

    Article  ADS  Google Scholar 

  6. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: An experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

    Article  ADS  Google Scholar 

  7. Huefner, S., Hossain, M. A., Damascelli, A. & Sawatzky, G. A. Two gaps make a high temperature superconductor. Preprint at &lt;http://arxiv.org/abs/cond-mat/0706.4282&gt; (2007).

  8. Campuzano, J. C., Norman, M. R. & Randeria, M. The Physics of Superconductors Vol. II, 167–273 (Springer, New York, 2004).

    Book  Google Scholar 

  9. Damascelli, A., Hussain, Z. & Shen, Z. X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  Google Scholar 

  10. Anderson, P. W. The resonating valance bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  11. Zhang, F. C., Gros, C., Rice, T. M. & Shiba, H. A renormalized hamiltonian approach to a resonant valence bond wavefunction. Supercond. Sci. Technol. 1, 36–46 (1988).

    Article  ADS  Google Scholar 

  12. Kotliar, G. A resonating valence bonds and d-wave superconductivity. Phys. Rev. B 37, 3664–3666 (1988).

    Article  ADS  Google Scholar 

  13. Paramekanti, A., Randeria, M. & Trivedi, N. Projected wave functions and high temperature superconductivity. Phys. Rev. Lett. 87, 217002 (2001).

    Article  ADS  Google Scholar 

  14. Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: The ‘plain vanilla’ version of RVB. J. Phys. Condens. Matter 16, R755–R769 (2004).

    Article  Google Scholar 

  15. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).

    Article  ADS  Google Scholar 

  16. Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

    Article  ADS  Google Scholar 

  17. Honerkamp, C., Fu, H. C. & Lee, D. H. Phonons and d-wave pairing in the two-dimensional Hubbard model. Phys. Rev. B 75, 014503 (2007).

    Article  ADS  Google Scholar 

  18. Newns, D. M. & Tsuei, C. C. Fluctuating Cu–O–Cu bond model of high-temperature superconductivity. Nature Phys. 3, 184–191 (2007).

    Article  ADS  Google Scholar 

  19. Valla, T. et al. Evidence for quantum critical behavior in the optimally doped cuprate Bi2Sr2CaCu2O8+δ . Science 285, 2110–2113 (1999).

    Article  Google Scholar 

  20. Yamasaki, T. et al. Unmasking the nodal quasiparticle dynamics in cuprate superconductors using low-energy photoemission. Phys. Rev. B 75, 140513 (2007).

    Article  ADS  Google Scholar 

  21. Valla, T. et al. Fine details of the nodal electronic excitations in Bi2Sr2CaCu2O8+δ . Phys. Rev. B 73, 184518 (2006).

    Article  ADS  Google Scholar 

  22. Basov, D. N. & Timusk, T. Electrodynamics of high-Tc superconductors. Rev. Mod. Phys. 77, 721–779 (2005).

    Article  ADS  Google Scholar 

  23. Valla, T. et al. Temperature dependent scattering rates at the Fermi surface of optimally doped Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 85, 828–831 (2000).

    Article  ADS  Google Scholar 

  24. Kaminski, A., Fretwell, H. M., Norman, M. R., Randeria, M. & Rosenkranz, S. Momentum anisotropy of the scattering rate in cuprate superconductors. Phys. Rev. B 71, 014517 (2005).

    Article  ADS  Google Scholar 

  25. Gedik, N., Yang, D. S., Logvenov, G., Bozovic, I. & Zewail, A. H. Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science 316, 425–429 (2007).

    Article  ADS  Google Scholar 

  26. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, New York, 1996).

    Google Scholar 

  27. Dynes, R. C., Narayanamurti, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).

    Article  ADS  Google Scholar 

  28. Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenological models for the gap anisotropy of Bi2Sr2CaCu2O8 as measured by angle-resolved photoemission spectroscopy. Phys. Rev. B 52, 615–622 (1995).

    Article  ADS  Google Scholar 

  29. Lang, K. M. et al. Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+δ . Nature 415, 412–416 (2002).

    Article  ADS  Google Scholar 

  30. McElroy, K. et al. Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 94, 197005 (2005).

    Article  ADS  Google Scholar 

  31. McElroy, K. et al. Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi2Sr2CaCu2O8+δ . Science 309, 1048–1052 (2005).

    Article  ADS  Google Scholar 

  32. Gomes, K. K. et al. Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Nature 447, 569–572 (2007).

    Article  ADS  Google Scholar 

  33. Howald, C., Fournier, P. & Kapitulnik, A. Inherent inhomogeneities in tunneling spectra of Bi2Sr2CaCu2O8−x crystals in the superconducting state. Phys. Rev. B 64, 100504 (2001).

    Article  ADS  Google Scholar 

  34. McElroy, K. et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ . Nature 422, 592–596 (2003).

    Article  ADS  Google Scholar 

  35. Hanaguri, T. et al. Quasiparticle interference and superconducting gap in Ca2−xNaxCuO2Cl2 . Nature Phys. 3, 865–871 (2007).

    Article  ADS  Google Scholar 

  36. Nunner, T. S., Andersen, B. M., Melikyan, A. & Hirschfeld, P. J. Dopant-modulated pair interaction in cuprate superconductors. Phys. Rev. Lett. 95, 177003 (2005).

    Article  ADS  Google Scholar 

  37. Quinlan, S. M., Hirschfeld, P. J. & Scalapino, D. J. Infrared conductivity of a d x 2 − y 2 -wave superconductor with impurity and spin-fluctuation scattering. Phys. Rev. B 53, 8575 (1996).

    Google Scholar 

  38. Dahm, T. Anisotropy of the quasiparticle damping in the high-Tc superconductors Bi2Sr2CaCu2O8 and YBa2Cu3O6.9 as seen from angle-resolved photoemission experiments. Phys. Rev. B 54, 10150–10154 (1996).

    Article  ADS  Google Scholar 

  39. Franz, M. & Millis, A. J. Phase fluctuations and spectral properties of underdoped cuprates. Phys. Rev. B 58, 14572–14580 (1998).

    Article  ADS  Google Scholar 

  40. Millis, A. J. & Norman, M. Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates. Phys. Rev. B 76, 220503(R) (2007).

    Article  ADS  Google Scholar 

  41. Kanigel, A. et al. Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nature Phys. 2, 447–451 (2006).

    Article  ADS  Google Scholar 

  42. Tanaka, K. et al. Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science 314, 1910–1913 (2006).

    Article  ADS  Google Scholar 

  43. Boyer, M. C. et al. Imaging the two gaps of the high-temperature superconductor Bi2Sr2CuO6+x . Nature Phys. 3, 802–806 (2007).

    Article  ADS  Google Scholar 

  44. Graser, S., Hirschfeld, P. J. & Scalapino, D. J. Local quasiparticle lifetimes in a d-wave superconductor. Preprint at &lt;http://arxiv.org/abs/cond-mat/0801.0101&gt; (2007).

  45. Chubukov, A. V., Norman, M. R., Millis, A. J. & Abrahams, E. Gapless pairing and the Fermi arc in the cuprates. Phys. Rev. B 76, 180501 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge and thank D. Dessau, E. W. Hudson, P. Johnson, D. H. Lee, P. A. Lee, A. P. Mackenzie, A. Millis, M. Norman, N. P. Ong, M. Randeria, D. J. Scalapino, K. Shen, T. Timusk, Y. Uemura and T. Valla for helpful conversations and communications. This work is supported by NSF through the Cornell Center for Material Research, by the Cornell Theory Center, by Brookhaven National Laboratory under Contract No. DE-AC02-98CH1886 with the US Department of Energy, by US Department of Energy Awards DE-FG02-06ER46306 and DE-FG02-05ER46236, by the US Office of Naval Research and by Grant-in-Aid for Scientific Research from the Ministry of Science and Education (Japan) and the 21st-Century COE Program for JSPS. Fellowship support is acknowledged by K.F. from I2CAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Davis.

Supplementary information

Supplementary Information

Supplementary Materials and Supplementary Figures 1–4 (PDF 196 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alldredge, J., Lee, J., McElroy, K. et al. Evolution of the electronic excitation spectrum with strongly diminishing hole density in superconducting Bi2Sr2CaCu2O8+δ. Nature Phys 4, 319–326 (2008). https://doi.org/10.1038/nphys917

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing