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Graphene’s conical valence and conduction bands give rise to
charge carriers that have neutrino-like linear energy dispersion
and exhibit chiral behaviour near the Dirac points where these
bands meet1–6. Such characteristics offer exciting opportunities
for the occurrence of new phenomena and the development
of high performance electronic devices. Making high quality
devices from graphene, which typically involves etching it into
nanoscale structures7–10, however, has proven challenging. Here
we show that a periodic potential applied by suitably patterned
modifications or contacts on graphene’s surface leads to further
unexpected and potentially useful charge carrier behaviour.
Owing to their chiral nature, the propagation of charge carriers
through such a graphene superlattice is highly anisotropic, and
in extreme cases results in group velocities that are reduced to
zero in one direction but are unchanged in another. Moreover,
we show that the density and type of carrier species (electron,
hole or open orbit) in a graphene superlattice are extremely
sensitive to the potential applied, and they may further be tuned
by varying the Fermi level. As well as addressing fundamental
questions about how the chiral massless Dirac fermions of
graphene propagate in a periodic potential, our results suggest
the possibility of building graphene electronic circuits from
appropriately engineered periodic surface patterns, without the
need for cutting or etching.

Since the pioneering work by Esaki and Tsu11, superlattices
have been studied extensively and have had a huge impact on
semiconductor physics12,13. Superlattices demonstrate interesting
phenomena such as negative differential conductivity, Bloch
oscillations, gap openings at the mini-Brillouin-zone boundary
formed by the additional periodic potential and so on12,13.
Conventional semiconducting superlattices are mainly produced
by molecular-beam epitaxy and metallo-organic chemical vapour-
phase deposition, whereas metallic superlattices are made by
sputtering procedures12,13. We expect that, by modulating the
potential seen by the electrons, graphene superlattices may be
fabricated by adsorbing adatoms on graphene surface through
similar techniques, by positioning and aligning impurities with
scanning tunnelling microscopy14–16 or by applying a local top-
gate voltage to graphene17–19. Epitaxial growth of graphene5 on
top of a prepatterned substrate is also a possible route to a
graphene superlattice. Recently, a periodic pattern in the scanning
tunnellingmicroscope image has been demonstrated on a graphene

monolayer on top of a metallic substrate20–22 as well. On the
theoretical side, it has been shown that a triangular array of
capped carbon nanotubes embedded vertically in graphene is
semiconducting and may become ferromagnetic on doping23, and
corrugation of graphene is expected to induce inhomogeneous
charge densities and localized states24.

The low-energy charge carriers in pristine graphene are
described by a massless Dirac equation and have a linear energy
dispersion which is isotropic near the Dirac points K and K′ in the
Brillouin zone1,3,4,25–27 (Fig. 1a). It is shown experimentally that the
carriers have a group velocity of v0 ≈ 106 m s−1, which plays the
role of an effective speed of light in (2+1)-dimensional quantum
electrodynamics3,4. Within the effective-hamiltonian formalism,
the wavefunction of the quasiparticles in graphene has two
components corresponding to the amplitude on the two different
trigonal sublattices of graphene, and can be represented by a two-
component spinor25–27. This spinor structure of the wavefunction
is called a pseudospin (because it is not related to a real spin) or
chirality25–29, which is of central importance to the novel physical
properties of graphene superlattices discussed below.

Let us now consider the situation where an additional periodic
potential is applied to graphene. If the spatial period of the
superlattice potential is much larger than the nearest-neighbour
carbon–carbon distance in graphene (∼1.42 Å), the scattering of
a state close to one Dirac point to another one does not occur25,26,28.
Therefore, even though there are two non-equivalent Dirac cones
for the energy dispersion surface of graphene, focusing on a
single cone is sufficient. This condition also implies that, in the
graphene superlattices discussed here, there is no gap opening at
the Dirac point25,26,28.

To investigate the physics of charge carriers in graphene
superlattices, we have calculated the energy dispersions, the group
velocities and the energy-gap openings at the minizone boundary
(MB) within the effective-hamiltonian formalism1. Effects of the
external periodic potential are incorporated into our calculation
through the scattering matrix elements between pseudospin states,
or chiral eigenstates, of the electrons in graphene (see the Methods
section). We have also carried out a tight-binding formulation and
obtained results identical to those discussed below.

First, for a one-dimensional (1D) graphene superlattice
(Fig. 1b), we find that the group velocity for states with wavevector
k (k is the wavevector of the Bloch state defined with respect to
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Figure 1 Graphene superlattices and anisotropic Dirac cones. a, Schematic
diagram of graphene. Inset: The Brillouin zone of graphene and Dirac cones centred
at Dirac points, among which two (K and K′) are non-equivalent (left), and the linear
and isotropic energy dispersion near one of the Dirac points of charge carriers in
graphene (right). b, One-dimensional (1D) graphene superlattice formed by a
Kronig–Penney type of potential periodic along the x̂ direction with spatial period L
and barrier width w. The potential is U1D in the grey regions and zero outside. Inset:
Energy dispersion of charge carriers in the 1D graphene superlattice. The energy
dispersion along any line in two-dimensional (2D) wavevector space from the Dirac
point is linear but with a different group velocity. For a particle moving parallel to the
periodic direction the group velocity (v‖) is not renormalized at all, whereas that for a
particle moving perpendicular to the periodic direction (v⊥) is reduced most. c, 2D
graphene superlattice with a muffin-tin type of potential periodic along both x̂ and ŷ
directions with spatial periods Lx and Ly , respectively. The potential is U2D inside the
grey disks with diameter d and zero outside. Inset: Energy dispersions of charge
carriers in the 2D graphene superlattice.

the Dirac point) is anisotropically renormalized, that is, it is a
strong function of the direction of k. For pristine graphene, the
group velocity of states near the Dirac point is parallel to k and
of constant magnitude (v0). For example, in a 1D superlattice of
a Kronig–Penney type of periodic potential with potential barrier
height (U1D) of 0.5 eV and spatial period (L) and barrier width
(w) of 10 nm and 5 nm, respectively, the group velocity of the
charge carriers when k is along a certain direction is renormalized
to be less than 40% of its original value v0, but it is the same
as v0 along some other direction. (Figure 2a: the plotted quantity
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Figure 2 Anisotropic velocity renormalization in graphene superlattices. a, The
component of the group velocity parallel to the k vector (v k̂ ≡ v(k) · k̂ with k
measured from the Dirac point) of charge carriers in a 1D graphene superlattice in
units of the Fermi velocity in graphene (v0) versus the angle (θk) of the k-vector from
the periodic potential direction x̂ (solid lines) and that in a superlattice made from a
fictitious system of non-chiral fermions with properties otherwise identical to those
in graphene (dashed lines). Red, green and blue lines correspond to U1D being
0.2 eV, 0.3 eV and 0.5 eV, respectively. b, Similar quantities as in a for a rectangular
2D graphene superlattice. Red, green and blue lines correspond to U2D being 0.3 eV,
0.5 eV and 0.7 eV, respectively. c, The group velocity of charge carriers in a 1D
graphene superlattice with k perpendicular to the periodic direction, v⊥, in units of
v0, versus U1D (solid line), and that in a superlattice made from a fictitious system of
non-chiral fermions with properties otherwise identical to those in graphene (dashed
line). d, v⊥ versus the potential spatial period (L) of charge carriers in a 1D
graphene superlattice. Red, green and blue lines correspond to a fixed potential
barrier height but with width (w) being 5 nm, 10 nm and 25 nm, respectively.

vk̂ ≡ v(k) · k̂ is the component of the group velocity parallel
to the wavevector k in units of v0. We note that this quantity,
which depends only on the direction of k (see Supplementary
Information, Discussion S1), is exactly equal to the absolute value
of the group velocity vg when k is at 0◦, 90◦, 180◦ or 270◦ from the
periodic direction of the applied potential and, when the applied
potential is weak, is only slightly different from vg at other angles
(see Supplementary Information, Discussion S2).) Thus, the group
velocity of charge carriers can be tailored highly anisotropically in
graphene superlattices. More interestingly, the group velocity when
k is along the direction perpendicular to the periodic direction
of the potential (v⊥) is reduced the most, whereas when k is in
the parallel direction it is not renormalized at all (Fig. 1b). This
result is counter-intuitive, because the velocity is strongly reduced
when the charge carrier is moving parallel to the hurdles, but is not
modulated when it is crossing them.

To understand the physics behind this phenomenon, we have
carried out the same calculation for a fictitious system with
carriers that have no chirality but are otherwise identical to those
in graphene, including the linear energy dispersion. The group
velocity in this system is reduced isotropically and the renormalized
group velocity is close to v⊥, that is, the maximally renormalized
one, in 1D graphene superlattices (Fig. 2a). Thus, it is clear that
the absence of velocity renormalization in the direction parallel to
the periodicity of the external potential originates from the chiral
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nature of the electronic states of graphene. This behaviour can be
demonstrated more clearly by second-order perturbation theory
in the case of the 1D periodic potential with weak amplitudes
(see Supplementary Information, Discussion S1). We note that
the chirality discussed here is also important in the tunnelling
phenomenon in graphene through a single barrier29 or a finite
number of barriers30.

In the case of 2D graphene superlattices, the group velocity is
renormalized for k states along every direction, but anisotropically
(Fig. 1c). As the amplitude of the potential increases, the overall
group velocity is reduced and the ratio of the maximum group
velocity to the minimum one is enhanced (Fig. 2b). Here, again,
the anisotropy disappears if the chiral nature of the states in
graphene is arbitrarily removed. As was demonstrated for the
1D superlattice, the sinusoidal dependence on the angle of
propagation as well as the overall shift in the case of a 2D
graphene superlattice of the component of the renormalized
group velocity parallel to k in the weak-potential limit is well
explained and reproduced by second-order perturbation theory
(see Supplementary Information, Discussion S1).

Remarkably, the anisotropy in energy dispersions of the 1D
superlattices can be tuned by changing the applied potential in
such a way that v⊥ is reduced completely to zero (Fig. 2c). Hence,
we can achieve extremely low mobility in one direction and
normal conduction in another one simultaneously. This enables
us to control the flow of electrons dramatically. It also provides a
novel non-destructive pathway to make graphene nanoribbons7–10,
which has been actively pursued by way of cutting graphene
sheets9,10. The chiral nature of the states in graphene also plays
a decisive role here. In the model without chirality as discussed
before the (isotropic) group velocity of charge carriers is reduced
monotonically and never reaches zero within a conceivable range
of the potential amplitude (Fig. 2c). We can also achieve vanishing
group velocity in one direction by changing the length parameters
of the superlattice (Fig. 2d).

Graphene superlattices show peculiar behaviour of gap
openings at the MB formed by the external periodic potential
(Fig. 3). In conventional layer-structured 1D superlattices, gap
opening at the MB is considered to be nearly constant, independent
of k. 1D graphene superlattices, however, are different in that the
gap (1E) vanishes when k is along the direction of the periodic
potential, that is, at the centre of theMB (Figs 3a, 4a).Moreover, the
size of the gap depends strongly on where it is on the MB (Fig. 3b).
These strong anisotropies in the gap opening do not happen in
superlattices made from a system with linear energy dispersions
but no chirality (Fig. 3b). Hence, again, the chiral nature of charge
carriers in graphene is key in generating these anisotropies in
the gap opening, as it does in the velocity renormalization. In
particular, the gap closure at the centre of the MB is directly related
to the absence of back-scattering of charge carriers from a scattering
potential when the size of the scatterer is several times larger than
the inter-carbon distance25,26,28. In 1D graphene superlattices, the
important length-scale is L, which is much larger than the inter-
carbon distance, and hence the gap does not open at the centre of
the MB.

The largest gap at the MB in a graphene superlattice is
proportional to the amplitude of the applied potential if the
potential is weak (that is, small compared to the band width) and
its size thus can be made to be a few tenths of an electron volt
with appropriate perturbation and far above room temperature
(Fig. 3b, Supplementary Information, Discussion S4). We have also
investigated the gap opening in 1D graphene superlattices with
different values of length parameters (L and w). We find that, by
changing these parameters, the anisotropy in the gap at the MB can
also be controlled (see Supplementary Information, Discussion S4).
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Figure 3 Energy gap at the superlattice Brillouin zone or MB of a 1D graphene
superlattice. a, Energy of charge carriers in a 1D graphene superlattice versus the
component of the wavevector k parallel to the periodic potential direction (kx ) at a
fixed ky . Dashed vertical lines indicate minizone boundaries (kx = ±π/L). 1E is
the energy gap at the minizone boundary for a given ky . Red and blue lines
correspond to ky being zero and 0.012 Å−1, respectively. b, 1E versus ky for
charge carriers in a 1D graphene superlattice (solid lines) and that in a superlattice
made from a fictitious system with states without chirality but otherwise identical to
graphene (dashed lines). Red, green and blue lines correspond to U1D being 0.1 eV,
0.3 eV and 0.5 eV, respectively.

Owing to the velocity renormalization near the Dirac point and
the strong anisotropy in energy dispersion close to the MB, the type
and the density of states (DOS) of charge carriers vary drastically
from those in graphene as we vary the Fermi energy (Fig. 4). As the
Fermi level changes, the topology of the Fermi surface also shows
a dramatic variation (see Supplementary Information, Discussion
S5). For example, as the Fermi level increases from the energy at
the Dirac point, the charge carriers of a 1D graphene superlattice
fill electron orbits and show a linear increase in the DOS with slope
larger than that of graphene, but above a certain value the DOS
of electron orbits vanishes and charge carriers suddenly fill open
orbits and hole pockets. When the Fermi level increases further,
charge carriers are in purely open orbits and then the DOS of
electron orbits starts to reappear and increases again (Fig. 4b).
We expect that the Fermi level in a graphene superlattice can be
tuned as in graphene by applying a gate voltage3,4,18,19. Hence, by
exploiting the various characteristics of charge carriers and the
Fermi-surface topology, we can manipulate a variety of physical
properties dominated by the Fermi surface, such as heat capacity,
conductance or magnetoresistance, significantly.

The anisotropic gap opening at the MB and the dramatic
variation of the characters of charge carriers with the Fermi
energy are also common in 2D graphene superlattices. The
gap at the centres of the zone boundaries closes as in 1D
graphene superlattices (Fig. 4c). However, the gap at the corners
of the 2D MB also disappears. This behaviour, which occurs
in rectangular 2D graphene superlattices in general, again has
its origin in the chiral nature of charge carriers in graphene
(see Supplementary Information, Discussion S3). In a square 2D
graphene superlattice, charge carriers are electrons, holes or a
mixture of the two depending on the Fermi level (Fig. 4d). For
general rectangular 2D graphene superlattices, charge carriers can
also be in open orbits.

Here we have presented several novel physical properties of
graphene superlattices with Kronig–Penney-type 1D and muffin-
tin-type 2D potentials. Through additional calculations, we have
confirmed that all the salient features of our findings are the same
in sinusoidal or gaussian types of graphene superlattices in general
as well. The novel properties discovered in the present study thus
should be very robust and relevant to experimentally fabricated
graphene superlattices.
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Figure 4 Energy dispersions and DOSs of charge carriers in graphene superlattices. a, Energy of charge carriers in a 1D graphene superlattice with U1D = 0.3 eV,
L= 10 nm and w= 5 nm in the first (red and black) and the second (blue and pink) band above the vertex of the Dirac cone versus 2D wavevector k away from the Dirac
point. MBs are at kx = ±0.031 Å−1. Arrows indicate points on the MB where the gap closes. b, DOS of charge carriers in electron orbits (red), open orbits (green) and hole
orbits (blue) in the 1D graphene superlattice characterized in a versus the Fermi energy (EF). The origin of the energy scale is set at the energy of the Dirac point. The DOS of
each species is the height of the corresponding coloured region. The dashed black line shows the DOS of pristine graphene for comparison. c, Similar quantities as in a for a
2D graphene superlattice with U2D = 0.3 eV, Lx = Ly = 10 nm and d= 5 nm. d, Similar quantities as in b for the 2D graphene superlattice specified in c.

METHODS

EFFECTIVE HAMILTONIAN FORMALISM
There are two carbon atoms per unit cell in graphene, forming two different
sublattices, and hence the eigenstate of charge carriers in graphene can be
represented by a two-component basis vector. In this work, we are considering
eigenstates near the K point in the Brillouin zone of graphene only as discussed
in the paper. The effective hamiltonian for low-energy quasiparticles of
graphene in this basis is given by

H0(k) = h̄v0

(
0 −ikx − ky

ikx − ky 0

)
,

where v0 is the Fermi velocity and k the small wavevector of the quasiparticle
from the K point. The energy spectrum of this hamiltonian is E= sh̄v0k, where
s is +1 or −1 for an eigenstate above or below the Dirac-point energy, which is
defined to be the energy zero, respectively. Eigenstates of this hamiltonian are
given by

〈r|s,k〉 =
1

√
2
ei(K+k)·r

(
1

iseiθk

)
,

where θk is the angle of vector k with respect to the k̂x direction. Now, when
an additional periodic potential U (r) is applied to graphene, the scattering

amplitude between states is given by〈
s,k|U (r)|s′,k′

〉
=

∑
G

1

2

(
1+ ss′e−iθk,k−G

)
U (G)δk′ ,k−G, (1)

where G and U (G) are the reciprocal lattice vector and the corresponding
Fourier component of the external periodic potential, respectively, and θk,k−G

the angle from k−G to k. The energy dispersions and eigenstates of the
quasiparticles in a graphene superlattice are obtained non-perturbatively within
the single-particle picture by solving the following set of linear equations:

(E− εs,k)c(s,k) =

∑
s′ ,G

1

2

(
1+ ss′e−iθk,k−G

)
U (G)c(s′,k−G), (2)

where E is the superlattice energy eigenvalue and εs,k = sh̄v0k the energy of the
quasiparticles before applying the periodic potential. c(s,k) and c(s′,k−G)

are the amplitudes of mixing among different unperturbed quasiparticle states.

Received 3 October 2007; accepted 28 January 2008; published 24 February 2008.

References
1. Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).
2. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA. 102,

10451–10453 (2005).
3. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438,

197–200 (2005).

216 nature physics VOL 4 MARCH 2008 www.nature.com/naturephysics

© 2008 Nature Publishing Group 



LETTERS

4. Zhang, Y., Tan, J. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect
and Berry’s phase in graphene. Nature 438, 201–204 (2005).

5. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312,
1191–1196 (2006).

6. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).
7. Son, Y.-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97,

216803 (2006).
8. Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444,

347–349 (2006).
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