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Tunable electron spins in solid media are among the most
promising candidates for qubits1. In this context, molecular
nanomagnets have been proposed as hardware for quantum
computation2. The flexibility in their synthesis represents
a distinct advantage over other spin systems, enabling the
systematic production of samples with desirable properties,
for example, with a view to implementing quantum logic
gates3,4. Here, we report the observation of quantum interference
associated with tunnelling trajectories between states of different
total spin length in a dimeric molecular nanomagnet. We
argue that the interference is a consequence of the unique
characteristics of a molecular Mn12 wheel, which behaves as a
molecular dimer with weak ferromagnetic exchange coupling:
each half of the molecule acts as a single-molecule magnet,
whereas theweak coupling between the two halves gives rise to an
extra internal spin degree of freedom within the molecule—that
is, its total spinmay fluctuate. More importantly, the observation
of quantum interference provides clear evidence for quantum-
mechanical superpositions involving entangled states shared
between both halves of the wheel.

Molecular nanomagnets have become prototype systems to
probe the realm that borders quantum and classical physics, as
well as to study decoherence phenomena in quantum systems4–11.
In particular, single-molecule magnets (SMMs) stand out as a
magnificent example of the possibilities offered by supramolecular
chemistry for the engineering of quantum properties in nanoscale
systems. SMMs contain multiple transition-metal ions bridged by
organic ligands. These ions are coupled by exchange interactions,
often in a ferrimagnetic manner, yielding a large magnetic
moment (spin) per molecule. This large spin, combined with
significant uniaxial anisotropy, provides a barrier to magnetization
reversal. Particularly important is the appearance of quantum
tunnelling through this barrier between states with opposite spin
projection, leading to step-wise magnetic hysteresis loops due to
the accelerated magnetic relaxation at fields that ‘switch on’ the
quantum tunnelling of the magnetization12,13 (QTM). This unique
feature is a consequence of the quantum superposition of high-
spin states of the molecule and has resulted in the observation of
a variety of fundamental phenomena3,14–17.

Here, we investigate a new Mn12-based wheel that can be
modelled as two ferromagnetically coupled S = 7/2 SMM units
giving rise to a total S = 7 ground state, as illustrated in Fig. 1a
(see the Methods section). The magnetization curves in Fig. 1c
show the characteristic steps associated with resonant QTM. Above
0.9 K, the hysteresis disappears and the data follow a Langevin
function with S (= 6.97) as the only fitting parameter (dashed
black line in Fig. 1c). From these results, we can roughly extract
the uniaxial anisotropy parameter D ∼ 0.4K (ref. 18). Below the
crossover temperature, Tc = 0.3K, identical magnetization curves
indicate that QTM relaxation occurs from the ground state of the
metastable well.

Assuming the typical giant-spin model, the spin hamiltonian
describing an SMM is

H= −DS2
z +E

(
S2
x −S2

y

)
−µBS · ĝ ·H, (1)

where the first term represents the zero-field splitting, primarily
resulting from spin–orbit coupling, and produces a uniaxial
anisotropy barrier separating opposite projections of the spin along
the axis of the wheel (magnetic easy axis). The second term is
a second-order transverse anisotropy, which generates hard and
medium axes in the plane of the wheel. The last term is the
Zeeman energy resulting from the coupling of the spin with an
externally applied magnetic field. For specific field values, known
as QTM resonances (Hk ≈ kD/gµB, with k = 0,1,2, . . .), levels
on opposite sides of the barrier become degenerate. Off-diagonal
hamiltonian terms break these degeneracies creating quantum
superpositions that lead to tunnelling through the barrier and steps
in the hysteresis loop. Using the extracted values of D (= 0.4K)
and S (= 7), we obtain QTM resonances at H0 = 0, H1 = 0.29 T
and H2 = 0.58 T, which coincide with three of the observed steps,
more specifically, those labelled k = 0, k = 1(S) and k = 2 in
Fig. 1d, where the derivatives of the magnetization curves for
the same temperatures are presented for clarity. Significantly,
however, the data also reveal extra resonances that are impossible
to explain with this simple rigid-spin model. In Fig. 1d, three
anomalous resonances are observed: one at H = 0.45 T present at
low temperature (labelled k=1(A)) and two that are only observed
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Figure 1 Structure and magnetism of the Mn12 wheel. a, Mn12 molecular wheel illustrating the exchange-coupled configuration of spins leading to a total spin S= 7 at low
temperature. The dashed line separates the molecule into two weakly coupled halves of spin S= 7/2 each. b, Micrograph of the single-crystal sample placed on top of the
cross-sensing area of a two-dimensional electron gas Hall-effect magnetometer. c, Hysteresis loops recorded at different temperatures with the field applied along the axis of
the wheel (easy magnetic axis). The magnetization relaxation towards equilibrium is accelerated at the resonance fields (steps). d, Field derivative of data in c. The
resonances are labelled according to the discussion in the text. e, Half-hysteresis loops (upright sweep) measured at T= 270mK in the presence of a transverse field of
different magnitudes.

for T > 0.5K, at fields below 0.2 T (labelled exc.). As we will show
below, these three resonances are key for the understanding of the
studied system. Figure 1e shows the magnetization as a function of
the longitudinal field, recorded in the presence of transverse fields
of different magnitude applied along the hard magnetic axis in the
plane of the wheel. Note that no QTM step appears between the
resonances at H = 0 and H = 0.29 T, even for transverse fields
as high as 3 T. Note also that this measurement was carried out
at T = 0.27K, and the resonances appearing in this field range
(labelled exc.) are only present above 0.5 K.

To explain the data, we adopt a model in which the two
halves of the wheel behave as ferromagnetically coupled units of
spin S1 = S2 = 7/2 (see the Methods section). The hamiltonian
describing this dimeric wheel isH=H1 +H2 +H12, whereH1 and
H2 are the hamiltonians (from equation (1)) for the two halves,
coupled by the Heisenberg superexchange interaction given by

H12 = −JzS
z
1S

z
2 − J⊥

(
Sx
1S

x
2 +Sy

1S
y
2

)
, (2)

where Jz and J⊥ are positive (ferromagnetic) exchange constants
characterizing the strength of the interaction. At the zeroth-order
level of approximation, the eigenvectors of this hamiltonian can be

written as products of the eigenvectors of each half of the molecule,
|S1,m1〉|S2,m2〉 (or |m1,m2〉, to simplify the notation), where m1

and m2 are the projections of the spins of each half-wheel along
the magnetic easy axis. The Heisenberg interaction couples the
spin states of each half generating a new configuration of levels
that can be grouped according to the projection, MS = m1 +m2,
of the total spin of the molecule onto the magnetic easy axis of
the wheel. We illustrate this point in Fig. 2a by showing the lowest
lying levels of the coupled system (with total spin projections
|MS| = 6, 7), which result from linear combinations of the states
|7/2,7/2〉, |7/2,5/2〉 and |5/2,7/2〉. The diagonal term of the
Heisenberg interaction of equation (2) generates an exchange bias
that shifts the energies of the levels by Jzm1m2. For comparison,
Fig. 2b shows the two lowest energy levels for a rigid-spin S = 7
for the entire molecule, whose dependence on the magnetic field
has been calculated by exact diagonalization of the hamiltonian
of equation (1) using D = 0.405K, E = 76mK and an isotropic
g = 2.0. The levels intersect at the fields HR = k× 0.29 T (with
k = 0,1,2, . . .) yielding the QTM resonances k = 0, k = 1(S) and
k = 2. However, owing to the fact that this description fails to
account for all observed QTM resonances, this simple S= 7 model
is deemed inadequate.
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Figure 2 Energy of the exchange-coupled wheel halves. a, Lowest-lying energy levels of the total molecular spin resulting from exchange coupling of the spin, S= 7/2,
of each half of the wheel. The Heisenberg interaction (Jz > 0) shifts the levels by a bias energy Jzm1m2, whereas the transverse interaction (Jx , Jy > 0) breaks the
degeneracy creating an exchange splitting between symmetric and antisymmetric states with easy-axis projection MS = 6. b, Schematic diagrams and longitudinal field
behaviour of the projection levels of the molecule assuming a rigid spin S= 7. c, Magnetic field behaviour of the levels assuming the exchange-coupled model of
two spin-7/2 wheel halves. Data from Fig. 1d are included to clearly show the association between the measured QTM resonances and the crossing of the spin levels of the
system. Orange lines indicate the level crossings contributing to the magnetic relaxation at high temperatures. d, Illustrations of the four levels involved in the QTM
resonances observed at low temperature. Of special interest is the different spin length, S= 6, of state 3, which becomes quantum mechanically connected to state 2, with
S= 7, at resonance k = 1(A); see text for details.

The second term of the interaction hamiltonian in equation (2)
couples the two S = 7/2 spins and lifts the degeneracy between
levels having the same MS value, producing an exchange-splitting,
∆J, between the symmetric and antisymmetric linear combinations
of the unperturbed product states, see the example in Fig. 2a for
the MS = 6 states. As a consequence of this splitting, these two
levels can be distinguished from each other by means of magnetic
measurements in the presence of a longitudinal field, because they
will produce an extra QTM resonance when they cross spin states
of opposite spin projection (see below). Note that these levels
have different total spin lengths, with the symmetric S = 7 and
antisymmetric S= 6 states written as

|S= 7,MS = 6〉 =
1

√
2

(|7/2,5/2〉+|5/2,7/2〉)S

|S= 6,MS = 6〉 =
1

√
2

(|7/2,5/2〉−|5/2,7/2〉)A.

(3)

The magnetic field dependence of the lowest-lying levels of the
coupled S = 7/2 half-wheels is shown in Fig. 2c. The results have
been calculated by exact diagonalization of the total interaction
hamiltonian using D7/2 = 0.865K(∼2D), E7/2 = 0.156K(∼2E)
(where the subindex 7/2 relates to each wheel half), isotropic
g = 2.0 and Jz = J⊥ = 0.39K. This set of parameters closely
reproduces each of the resonances observed in the experiment,
including the thermally activated ones (labelled exc. in Figs 1d
and 2c) observed above 0.5 K. Note that none of these resonances
can be understood in terms of the rigid-spin model, as they
involve levels that are split by the action of the exchange. The
excellent agreement between the proposed model and all of the
observed QTM resonances (low and high temperature) strengthens
the validity of our description. To illustrate the proposed model,
Fig. 2d contains representations of the four levels involved in the
low-temperature resonances.

The dependence of the tunnel splitting on the transverse field,
applied along the hard axis of the molecule, has been extracted for
the resonances k = 0, k = 1(S) and k = 1(A) from an analysis of
the height of the magnetization steps according to the Landau–
Zener formula, which links the QTM probability (normalized
1M) with the tunnel splitting, ∆. The results, shown in Fig. 3a,
reveal oscillations in the probability corresponding to quantum
interference between equivalent tunnelling trajectories, modulated
with a period 1HT = 0.4 T. We first focus on the symmetric
resonances: the calculated splitting behaviours of the k = 0 and
k = 1(S) resonances are shown in Fig. 3c (black and red lines,
respectively). The solid lines are a result of exact diagonalization
of the total interaction hamiltonian with the same parameters used
in Fig. 2c and are in excellent agreement with the experiment. For
comparison, the dotted lines are calculated from the hamiltonian
of equation (1) for a rigid spin S = 7 with the parameters used
in Fig. 2b, illustrating the similarity between both descriptions as
relating to the crossing of symmetric states.

The primary focus of this work is to shed light on the origin
of resonance k = 1(A), which results from the avoided level
crossing of the symmetric |S = 7,MS = −7〉 and antisymmetric
|S = 6,MS = 6〉 states, labelled 2 and 3 in Fig. 2d, respectively.
Given that the other resonances could be well explained with
a rigid-spin model, this is the only resonance observed in the
low-temperaturemagnetization that requires the exchange-coupled
dimer description. One interesting aspect of our results is the
fact that the symmetric and antisymmetric nature of the levels
involved in this resonance requires further interaction terms in the
hamiltonian, which are capable of breaking the degeneracy and
producing a tunnel splitting of adequate magnitude to explain the
observed QTM rate. Indeed, this is an old question within the SMM
community, because QTM is commonly observed in most SMMs
at forbidden resonances, even when the required interactions are
either absent or clearly insufficient to explain the experimental
results17. Two possible sources of broken degeneracy, appropriate
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Figure 3 Quantum interference effects on the tunnel splittings. a, Behaviour of the tunnel splittings, ∆k , of resonances k = 0, k = 1(S) and k = 1(A) as a function of a
transverse magnetic field applied along the hard anisotropy (x) axis in the plane of the wheel. The splittings of all resonances vanish at certain field values that are regularly
spaced by a period of 0.4 T. These oscillations correspond to destructive quantum interference of opposite QTM trajectories. The phase shift between resonances k = 0 and
k = 1(S) is a consequence of the spin parity effect, which breaks the zero-field degeneracy of the ground state of an integer spin (∆k=0 > 0 at H= 0). Resonance k = 1(A)
also shows the same oscillation period, with a small field shift of ∼0.05 T with respect to resonance k = 1(S). b, Illustration of the direction of the hard anisotropy axis in the
plane of the molecule (almost perpendicular to the axis separating the two wheel halves). c, Calculated transverse field dependence of the tunnel splittings of resonances
k = 0, k = 1(S) using the same parameters as in Fig. 2c plus a Dzyaloshinskii–Moriya interaction for resonance k = 1(A). d, Representation of the avoided crossing of levels
at resonance k = 1(A). The tunnel splitting, ∆, separates the symmetric and antisymmetric superposition states with different spin length.

to the symmetry and chemical composition of the system are
discussed in the Methods section.

Of most relevance is the fact that this resonance connects
two magnetic states of different spin length. Figure 3d exemplifies
this field dependence in the vicinity of the resonance, where the
symmetric and antisymmetric superposition states of different
spin length,

|ψ〉 =
1

√
2

(|S= 6,MS = 6〉±|S= 7,MS = −7〉),

are separated by the tunnel splitting, ∆.
Quantum superpositions of states with different spin length

have recently been observed in the paramagnetic heterometallic
Cr7Ni wheel by means of neutron scattering experiments19.
However, this is the first time that a uniaxial SMM has shown
this effect. Until now, only transverse oscillations involving a fixed-
length (rigid) spin between opposite MS projections have been
reported for SMMs (ref. 15). The significance of our result resides
in the fact that a transverse field can be used to modulate the tunnel
splitting, which constitutes firm evidence for quantum interference
associated with the total spin length of an exchange-coupled dimer
of molecular nanomagnets.

QTM and quantum coherence in antiferromagnetic and
ferrimagnetic exchange-coupled molecular clusters has been, and
continues to be a topic of intense theoretical study20,21. Of particular
relevance to our work is the topological quenching of the tunnel
splittings in SMMs that was predicted by Loss et al.22 and
von Delft and Henley23 for semi-integer spins with Kramers’
degeneracies. Garg24 extended this result for integer spins with
quadratic anisotropy, and Leuenberger and Loss25 generalized it for
integer spins for a general class of magnetic anisotropy. Berry-phase
interference has been experimentally observed in the Fe8 (ref. 15)
and Mn12 (refs 16,17) SMMs. Nevertheless, topological effects

on the QTM involving exchange-coupled SMMs have not been
studied theoretically. However, the development of geometrical
phases in systems of two entangled spin-1/2 particles precessing in
a time-independent uniform magnetic field has been theoretically
considered by Sjoqvist26. This author showed that when there is an
exchange interaction between the particles, the geometrical phase
acquired by the system during precession cannot be reduced to
the sum of the phases of each independent particle (which is
the case when the interaction is absent). This work provides a
clear demonstration of the importance of the entanglement for
the geometric phase of quantum systems with interacting parts,
which is particularly relevant in two-photon interferometry studies.
Note that the QTM for non-interacting SMMs can be described in
terms of a spin precessing in imaginary time around an effective
uniform magnetic field, where topological interference between
opposite tunnel trajectories with different geometrical phases leads
to quenching of the tunnelling splitting15–17,22–25. In a similar way,
it could be speculated that in the case of two interacting SMMs,
as is the case for the system studied here, the observed oscillation
of the tunnelling probability may be attributed to topological
interference (two competing Berry phases). Although a formal
theoretical background is absent in the case of pairs of exchange-
interacting SMMs and, therefore, this interpretation is speculative,
the results provided here constitute a remarkably clean example
of an exchange-coupled pair of quantum tunnelling giant spins,
providing a solid experimental basis for any future theoretical
studies of topological effects in interacting systems.

METHODS

CHEMICAL AND PHYSICAL DESCRIPTION OF THE SAMPLE
The Mn12-based wheel [Mn12(Adea)8(CH3COO)14]·7CH3CN was synthesized
using the ligand n-allyl-2,2′-iminodiethanol. This single-stranded wheel is a
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structural analogue of a previously reported series of Mn12 wheels27,28 and
consists of six Mn(II) (S= 5/2) and six Mn(III) (S= 2) ions alternating in a
ring-shaped topology with eight n-allyl-2,2′-iminodiethanol dianions. Addition
of one equivalent of the ligand n-allyl-2,2′-iminodiethanol to Mn(II) acetate
in dichloromethane gives a red coloured solution. After a further addition of
one equivalent of triethylamine, the solution turns a deep reddish brown and is
allowed to stir overnight. A white precipitate is obtained which is filtered off. A
subsequent evaporation of the filtrate by vacuum distillation yields oil, to which
100ml of acetonitrile is added. Slow evaporation of the acetonitrile solution
leads to the formation of plate-shaped crystals after approximately one week.
The crystal structure indicates that four Mn(II) ions and six Mn(III) ions are
six-coordinate, with the remaining twoMn(II) ions being seven-coordinate with
a pentagonal-bipyramidal coordination geometry. This complex crystallizes in
the P-1 space group with seven acetonitrile solvent molecules per wheel and one
Mn12 wheel molecule in the unit cell.

Exchange interactions between neighbouring manganese ions in the wheel
lead to the spin configuration shown in Fig. 1a, which represents the molecule
in its S= 7 ground state. Estimates for the strengths of the exchange interactions
carried out for a similar compound29 reveal that the exchange interaction
between two manganese pairs at opposite sides of the wheel is over two orders
of magnitude weaker than that of the other pairs of the wheel, splitting the
molecule into two half-wheels of spin S= 7/2 each, which can be modelled as
ferromagnetically coupled units giving rise to a total S= 7 ground state.

HYPERFINE AND SYMMETRY HAMILTONIAN TERMS OF THE MOLECULE
Further terms in the hamiltonian of equation (1) arising from the composition
and symmetry lowering of the molecule can break the degeneracy of resonance
k= 1(A) and explain the observed tunnelling relaxation rates. One potential
source of broken degeneracy involves hyperfine interactions, because they
can mix spin states making the transition moment integrals non-zero30.
However, the mixing in this case is only of the order of ∼A2/J2, where
A (� J) is the hyperfine interaction constant. Our estimates indicate that
this interaction is clearly insufficient to explain the observed tunnel splitting
values in resonance k = 1(A). Aside from mixing, the degeneracy between
the two levels at resonance k= 1(A) can only be broken by an antisymmetric
coupling, such as the Dzyaloshinskii–Moriya exchange interaction resulting
from spin–orbit coupling. However, X-ray diffraction data reveal an inversion
centre of symmetry that prevents a Dzyaloshinskii–Moriya interaction in this
molecule. It is possible that slight deformations at low temperature distort the
symmetry of the molecule allowing Dzyaloshinskii–Moriya coupling, although
we do not have clear evidence to support this hypothesis, which will be the focus
of future investigation. For illustrative purposes, we have solved the complete
interaction hamiltonian including a spin–orbit correction using the model
given in ref. 31 in which a Dzyaloshinskii–Moriya term, −J sinφ(Sx1S

y
2 −S

y
1S

x
2 ),

is added to the hamiltonian in equation (2), where Jz and J⊥ are substituted
by J and J cosφ, respectively. In this description, φ represents the angle of
precession of the electron spin hopping between the two Mn ions of the pairs
separating the wheel halves through the oxygen bridge. The calculated data
shown in Fig. 3c were obtained with J = 0.390K and φ= 1.5◦. As can be seen in
Fig. 3c, this calculation is in good qualitative agreement with the experimental
behaviour, accounting both for the magnitude of the tunnel splitting and the
observed interference pattern parity (positions of the interference minima).

MAGNETIC MEASUREMENTS
The experiments were carried out on a 20×50×100 µm3 single crystal placed
on top of a high-sensitivity micro-Hall-effect magnetometer as shown in
Fig. 1b. Magnetization hysteresis loops were recorded by applying a magnetic
field along the easy magnetic axis, which coincides with the axis of the wheel, at
different temperatures down to 0.27 K in an Oxford Instruments 3He cryostat.
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