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Superconducting loops exhibit macroscopic quantum
phenomena that have far-reaching implications; magnetic
flux periodicity and flux quantization are the key to our
understanding of fundamental properties of superconductors
and are the basis for many applications. In superconducting
rings, the electrical current responds to a magnetic flux by
having a periodicity of h/2e, where the ratio of Planck’s
constant and the elementary charge defines the magnetic
flux quantum h/e. The well-known h/2e periodicity is a
hallmark for electronic pairing in superconductors and is
considered evidence for the existence of Cooper pairs. Here,
we show that in contrast to this long-held belief, rings
of many superconductors bear an h/e periodicity. These
superconductors include the high-temperature superconductors,
Sr2RuO4, the heavy-fermion superconductors, as well as all
other unconventional superconductors with nodes (zeros) in the
energy gap, and conventional s-wave superconductors with small
gaps. As we show, the 50-year-old Bardeen–Cooper–Schrieffer
theory of superconductivity implies that for loops of such
superconductors the ground-state energies and consequently
also the supercurrents are generically h/e periodic.

Currents of electrons moving on multiply connected paths are
modulated by an appliedmagnetic flux with a period of h/e (ref. 1),
as predicted by Aharonov and Bohm2. In superconducting rings,
the order parameter also responds periodically to a magnetic flux,
as London recognized when he analysed the implications of a
single-valued superconducting wavefunction3; different condensate
states, which differ by integer flux quanta, are related by a gauge
transformation. London concluded that the flux periodicity in
superconducting rings is h/e (ref. 3). He missed, however, a class
of supercurrent-carrying wavefunctions, which were identified
years later4–6, and enabled explanation of the experimentally
observed h/2e flux quantization7,8. Indeed, according to the
Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity9,
the electronic condensate is formed by Cooper pairs, which carry
twice the elementary charge. However, fundamentally it is not just
the pairing motivated substitution of e by 2e, from which the
periodicity in h/2e originates, but rather the subtle requirement
of the degeneracy in energy4–6 of the two distinct classes of
supercurrent-carrying states.

The original flux trapping experiments7,8, which proved the
h/2e flux quantization in superconductors, as well as the later
experiments10–12 were considered a manifestation of the formation
of Cooper pairs in the then known conventional superconductors.
The discovery that magnetic flux changes the magnetization of

YBa2Cu3O7-δ rings with a periodicity of h/2e was similarly argued
to also provide evidence for Cooper pairs in high-temperature
superconductors13.

Does, vice versa, the existence of Cooper pairs or the h/2e
flux quantization necessarily imply an h/2e periodicity of the
energy or the current in superconducting loops? In fact, the
h/2e periodicity requires that multiply connected superconductors
threaded by a flux nh/2e are degenerate in energy for different
integers n. In superconducting s-wave rings or hollow cylinders
with inner diameter d, this degeneracy occurs if d � ξ, where ξ is
the coherence length4–6. In the opposite regime, d ∼

< ξ, the discrete
quantum nature of the electronic states in the ring matters and
the energies at half-integer and integer flux quanta are generally
different; correspondingly, the superconducting behaviour is only
h/e periodic (see Fig. 8-8 in ref. 14). This behaviour should be
observable, possibly in Al rings with d < ξ = 1.6 µm.

The oscillation period of energy and currents in
superconducting rings is therefore not always h/2e. In fact, as
we report here, the BCS theory strictly predicts that for rings of
superconductors with nodes in their gap functions, such as the
high-Tc cuprates, Sr2RuO4 or the heavy-fermion superconductors,
the ground-state energy is generically h/e periodic. For all of
these superconductors, the states that yield the BCS-condensate
state also include current-carrying states with energies close to the
Fermi energy EF. As a result of the magnetic-field-driven change
of occupation of these states and the concomitant reconstruction
of the condensate, the superconducting rings develop an h/e
periodicity of the supercurrent.

The flux periodicity in mesoscopic loops of d-wave
superconductors is contained in the solution of the Bogoliubov–
de Gennes (BdG) equations15 for the pairing hamiltonian:

H= −t
∑
〈ij〉,σ

eiϕij c†
iσ cjσ +

∑
〈ij〉

[
∆∗

ijcj↓ci↑ +∆jic
†
i↑c

†
j↓

]
.

The operators cjσ (c†
jσ) annihilate (create) an electron on lattice

site j with spin σ =↑,↓; t is the hopping matrix element between
nearest-neighbour sites, ϕij = 2πe/h

∫ j

i
A(r) ·dr is the Peierls phase

factor and A is the vector potential of the magnetic field. The
order parameter of the superconducting state ∆ij is defined on the
links between neighbouring sites with phase factors appropriate for
d-wave symmetry.

Figure 1 shows the probability density of the wavefunction for
a state with energy close to EF on a square loop, whose edges are
oriented parallel to the [100] and [010] directions, respectively.
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Figure 1 Real-space representation of a square loop with a typical electronic
probability density |Ψ |2 of a single state in the condensate. An eigenstate of the
d-wave pairing hamiltonian, calculated for a square loop with 80×80 lattice sites
with a pairing interaction of 0.3t. The hole in the centre has a size of 28×28 unit
cells. To enhance the contrast of the complex pattern, the special colour code shown
on the right is used and the discrete lattice points are smoothly interpolated.
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Figure 2 Energy spectrum of the d-wave BCS model. The eigenenergies in the
gap region are shown for a square 40×40 loop with a hole of 14×14 unit cells and
pair interaction 0.3t as a function of flux Φ (in units of h/e). The energies are given
in units of the superconducting order parameter ∆0 at Φ = 0 (∆0 ≈ 0.22t ). The
superconducting condensate consists of the states below EF = 0 (red lines).
Reconstruction of the condensate takes place near Φ = ±(2n+1)h/4e, where the
eigenenergies jump abruptly. The blue labels ‘A’ and ‘B’ refer to the current patterns
shown in Fig. 4.

The d-wave loop eigenstates are obviously far more complex than
the angular momentum eigenstates of a one-dimensional circular
ring (see ref. 14), and the current flow in this loop can only be
evaluated numerically. Nevertheless, a qualitative discussion also
allows insight into the underlying physics.

To assess the global quantities, namely, energy and current,
the evolution of the eigenenergies with magnetic flux has to be
calculated. The eigenstates with energies below EF form the ground-
state condensate (Fig. 2). In the following, only flux values Φ
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Figure 3 Flux dependence of energy and current. a,b, Total energy
(E (Φ )− E (0) )/E (0) (a) and total circulating current J (b) for a square 40×40 loop
with a hole of 14×14 unit cells and pair interaction 0.3t as a function of flux Φ in
units of h/e. J is given in units of et/ h̄= 6×10−5A for a typical choice of
t= 250meV. There is a clear difference between condensate states with an even
and an odd winding number q of the order parameter, reflected, for example, in the
deformation of the q= 0 parabola. The overall Φ-periodicity for E and J is h/e.

between 0 and h/2e are discussed, because all quantities are either
symmetric or antisymmetric with respect to flux reversalΦ →−Φ.
Two clearly distinct regimes are found: the flux intervals between 0
and ' h/4e and from ' h/4e to h/2e.

Up to Φ ' h/4e, the supercurrent J generates a magnetic field
that tends to compensate the applied field. This is achieved by a
continuous shift of the eigenenergies in the condensate. At Φ = 0,
pairs of states with opposite circulation compensate their respective
currents, and thus J =0. The well-separated states atΦ =0 in Fig. 2
are the states in the vicinity of the nodes of the mesoscopic d-wave
superconductor. At energies further away from EF, the state density
is higher; these are the states near the maximum energy gap that
provide most of the condensation energy. For Φ > 0, the energy
of the states with orbital magnetic moment antiparallel (parallel)
to the magnetic field is increased (decreased). Correspondingly,
the supercurrent carried by these states depends on the details
of level crossings and avoidings. The main contribution to the
supercurrent arises from the occupied levels closest to EF, because
the contributions from the lower-lying states tend to cancel in
adjacent pairs.

As the highest occupied state shifts with increasing flux to lower
energies, the current in the square loop first increases for small
Φ (Fig. 3), then decreases, when the highest occupied level with
an orbital moment opposite to the applied magnetic field starts
to dominate. With increasing flux, this state approaches EF. For
s-wave rings, this ‘Doppler shift energy’ (see ref. 15) corresponds
to the critical value of the superfluid velocity, for which the
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Figure 4 Current distribution in a square loop of 40×40 lattice sites. The current expectation value of the occupied state closest to EF = 0 is shown for flux
Φ = 0.17h/e (a; the state is marked with ‘A’ in Fig. 2) and for Φ = 0.21h/e (b; marked with ‘B’ in Fig. 2). The colour encodes the projection of the current onto a square
path around the loop whereby red presents an anticlockwise and blue a clockwise circulation. The maximal current is Jmax = 0.15et/ h̄ for a, and 0.13et/ h̄ for b. The
current distribution of each of the two states has strong spatial variations and does not fulfil the continuity condition which, however, is restored for the total current.

indirect energy gap closes. For d-wave loops, the order parameter is
protected by the numerous states that form the ‘lobes’ of the d-wave
gap parameter.

For d-wave loops and rings with other unconventional order
parameter symmetries, the states in the vicinity of the nodes
evolve with increasing flux as in small-gap s-wave rings. They
do not necessarily cross EF (Fig. 2) owing the hybridization of
the respective states above and below EF. Nevertheless, a state
with one direction of current is replaced by a state of opposite
direction (Fig. 4). The current-carrying states of the condensate
are thereby continuously changing near the extrapolated crossing
points. As a consequence, the energy ‘parabola’ centred at zero
flux is different from the ground-state energy parabola centred at
Φ = h/2e (Fig. 3). The deviation from a parabolic shape near zero
flux is due to the evolution of the near-nodal states; the vertical
offset of the energy minima at Φ = nh/e results mostly from
the flux dependence of the states near the maximum value of the
anisotropic gap.

For a flux value near h/4e the condensate reconstructs.
The reconstructed superconducting state belongs to the class of
wavefunctions introduced by Byers and Yang4 in which, for a
circular geometry, each pair increases its centre of mass angular
momentum by h̄ (ref. 14). Remarkably, in the flux interval from
near h/4e to h/2e, a full energy gap also exists for d-wave
superconductors (Fig. 2). Here, the circulating current enhances
the magnetic field; the paramagnetic moment of the current is
parallel to the field. The resulting energy gain is responsible
for the field-induced energy gap. This reconstruction of the
condensate is the origin of the h/e periodicity in energy and
current. Intriguingly, for superconductors with unconventional
order parameter symmetries, larger loops (d � ξ) are also
h/e periodic.

The numerical solution of the BdG equations with a self-
consistency condition for the order parameter is adequate for
'15 nm rings. However, to examine systems of micrometre size,
the nodal states have to be described using a continuous gapless
density of states. The flux induces a Doppler shift that modifies
the states and alters their occupation near EF, thereby causing an
h/e component of the current J . Whereas the h/2e component

of J ∝ 1/d, the h/e component decreases with 1/d2 (see the
Supplementary Information). In quantitative agreement, the h/e
component reduces by a factor of 60 on increasing the size of
the ring, shown in Fig. 1, to the micrometre scale. Using typical
parameter values for a yttrium barium copper oxide ring of 1 µm
size, the ratio of the h/e versus the h/2e Fourier component
remains in the per cent range. The frame width w of the ring
has little influence on the weight of the h/e component for loops
for which w is smaller than the penetration depth l. A similar
behaviour is also shown by loops with w > l, because only states
that result in the current-transport channels within l significantly
affect the h/e component.

Our calculations show that although changes in geometry, the
number of transverse channels and elastic scattering by impurities,
modify the J(Φ) characteristics in detail, they do not eliminate
the h/e component. As long as the single-particle states are well
defined, electronic correlation effects, which are responsible for the
renormalization of states and of coupling parameters, are also not
expected to have a strong influence on the discussed phenomena.

The robust magnetic-flux-induced presence of currents that
flow opposite to the main screening currents affect many properties
of unconventional superconductors. Of particular importance are
a resulting enhancement of the London penetration depth and
a weakening of the radiofrequency shielding. Furthermore, at
any temperature, including T = 0, the condensation energies,
the screening current densities, the kinetic inductances and the
penetration depths of rings of nodal superconductors are h/e
periodic, the relative intensity of the h/e Fourier component
decreasing with 1/d. The same properties are predicted for loops
of s-wave superconductors with small gaps such as rings with
diameters smaller than ξ. These predictions are strict, free of fitting
parameters and are therefore open to stringent experimental tests.
The h/e periodicity of the supercurrent is a fundamental property
of loops formed by unconventional superconductors.
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