
LETTERS

Spectral weight transfer in the integer
quantum Hall effect and its consequences
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The energy spectrum of a two-dimensional electron gas placed
in a transversal magnetic field B consists of quantized Landau
levels. In the absence of disorder, the degeneracy of each Landau
level is N = B A/φ0, where A is the area of the sample and
φ0 = h/e is the magnetic flux quantum. With disorder, localized
states appear at the top and bottom of the broadened Landau
level, whereas states in the centre of the Landau level (the
critical region) remain delocalized. This single-electron theory
adequately explains most aspects of the integer quantum Hall
effect1. One unnoticed issue is the location of the new states that
appear in the Landau level with increasing B. Here, we show
that they appear predominantly inside the critical region. This
situation leads to a ‘spectral ordering’ of the localized states,
which explains the stripes observed inmeasurements of the local
inverse compressibility2,3, of two-terminal conductance4 and of
Hall and longitudinal resistances5 without the need to invoke
interactions as done in previous work6–8.

The spectrum and eigenstates of a disorder-broadened Landau
level can be studied with the well-established approach of
diagonalizing the single-electron hamiltonian

H = (2me)
−1[−ih̄∇ + eA(r)]2 +V (r), (1)

where V (r) is the disorder. We choose A(r) = (0, Bx) and
apply periodic boundary conditions (PBCs) to a system of area
A = L× L. Owing to the PBCs, the degeneracy of each Landau
level, N = BL2/φ0, is an integer. Usually, in theoretical studies
the magnetic field is kept fixed and the electron density ne or,
equivalently, the filling factor ν= neA/N , is swept by adjusting the
Fermi energy EF.

As the experiments mentioned above investigate the behaviour
of various quantities in the (ne,B) plane, we need to understand
how the spectrum changes when B is also tuned. Given the
constraint that an integer number of fluxes must penetrate the
sample, B can only change in discrete steps of φ0/L2. Therefore, we
ask the following question: how do single-electron wavefunctions
evolve when one more magnetic flux is inserted?

Let |i,N〉, 1 ≤ i ≤ N be the eigenstates of a spin-polarized
Landau level corresponding to a given disorder V (r) and a
magnetic field B=Nφ0/L2. The states are ordered by their energies
E1 < E2 < ··· < EN (accidental degeneracies can be lifted with
minute changes in V (r)).

To see how the wavefunctions evolve when B increases, we
calculate their disorder-averaged overlaps:

DN (i, j) = |〈i,N |j,N+1〉|2, (2)

where 1 ≤ i ≤ N and 1 ≤ j ≤ N + 1 label two eigenstates of the
hamiltonian (1) with the same disorder potential but different
magnetic fields. The overline indicates a disorder average. In the
results presented here we typically average over 1,000 disorder
realizations, and show results only for the spin-polarized lowest
Landau level. Similar results are expected in higher Landau levels.
The disorder potential V (r) is modelled as a sum of many short-
range, randomly placed gaussian scatterers. We show four sets
of data, for L = 250,400,500,750 nm, N = 50,128,200,550 and
therefore B = 1.654 T for the first three data sets and 2.022 T for
the last data set.

The N by N + 1 matrix DN (i, j) is almost zero everywhere
except near its diagonal, as shown in Fig. 1a. Focusing on this region
in Fig. 1b, we see that DN (i, i) decreases from near unity to near
zero as i increases from 1 to N , whereas DN (i, i+ 1) is almost
the mirror image of DN (i, i). They intersect at i/N ≈ 1/2, that
is, half-filling, where they seem to have a universal value, which is
independent of N and B. These elements change most rapidly in
a region near half-filling, which becomes narrower as N increases.
Other matrix elements, for example, DN (i, i−2) shown in Fig. 1c,
exhibit a very small peak in this narrow region which we identify as
the critical region.

As the overlap of equation (2) measures the similarity of
eigenstates, Fig. 1 reveals that when B increases by δB = φ0/L2,
the new state appears predominantly in the centre of the disorder-
broadened Landau level. This is not surprising because the
extended states can enclose a large area (and thus sufficient of
the extra flux) so that the effects of the δB � B increase are not
perturbative. In contrast, for localized states the effect of the extra
flux is always perturbatively small. Thus, localized states at the
bottom of the Landau level are little affected and keep their spectral
ordering leading to large overlaps DN (i, i). Localized states at the
top of the Landau level also keep their spectral ordering but are
shifted upwards by 1, to account for the new eigenstate created
in the critical region. This explains why DN (i, i+ 1) is close to
unity there.

This conclusion can also be reached using well-known results
for the Hofstadter butterfly. To map into these, we tile the infinite
plane with copies of the L× L system, so that the disorder V (r)
becomes periodic with period L. The resulting Hofstadter problem
has as a magnetic unit cell the L×L area, and thus it corresponds
to BL2/φ0 = q/p=N . The eigenstates of hamiltonian (1) are now
magnetic Bloch waves ψi,k(r)= e−ik·rui,k(r). The integer i labels the
q = N magnetic Bloch bands (MBBs) originated from a Landau
level. The functions ui,k(r) satisfy generalized PBCs9. In effect, each
of the N eigenstates of a Landau level of the finite-size L×L system
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Figure 1 Overlap between eigenstates with an extra magnetic flux quantum. a, Plot of the 50 by 51 overlap matrixD50, defined in equation (2). Only elements near the
diagonal are visible. b,DN (i, i ) andDN (i, i+1) versus filling factor i/N for four different sizes N= 50, 128, 200 and 550. The transitions sharpen as N increases. c, Typical
off-diagonal overlap matrix elementsDN (i, i−2) versus i/N, for the same values of N. These are much smaller than the main diagonal elements shown in b. The peak
narrows as N increases.

has evolved into an MBB of the Hofstadter problem (the former
are the k = 0 states of the latter). As a result, we can associate
with each eigenstate of the finite-size system the Chern number σi

of the corresponding MBB9. σi is defined for each MBB, because
energy bands Ei(k) and Ei+1(k)may only touch at discrete k points,
and small changes in V (r) remove such degeneracies, as implicitly
assumed when σi is calculated in refs 10,11.

Thouless showed that localized states have zero Chern
numbers12, which is easy to understand, because localized states
are rather insensitive to changes in the boundary conditions used
to calculate the Chern number9. This is verified by numerical
calculations10,11, which find that non-zero Chern numbers appear
near the centre of the Landau level, with a distribution in perfect
agreement with the scaling theory of the integer quantum Hall
effect13–15 (IQHE).

When the magnetic field is increased by φ0/L2, that is,
N → N + 1, a new MBB must appear in the spectrum generated
from each Landau level, and thus one of the original MBBs must
split into two. We now argue that only an MBB with a non-zero
Chern number can do this; in other words, the new MBB (new
state) appears in the critical region.

A simple proof is obtained by combining Thouless and
co-workers’ famous proportionality between the Hall conductance
of an MBB and its Chern number9 and Středa’s formula16 linking
the Hall conductance to the change in the density of states with
changing B. This gives an expression for the Chern number:

σi = he−1∂Ni(B)/∂B,

where Ni(B) is the density of states in the ith MBB. If this
corresponds to a localized state, then σi = 0 and this MBB cannot
be the origin of the new state because its density of states stays

unchanged as B varies. The new electronic state in this Landau
level must therefore originate from subbands having non-zero
Chern numbers.

Further proof for the above result is obtained from the
semiclassical theory of Chang and Niu17,18. If δB = φ0/L2 supplies
the extra flux quantum, the quantization condition of hyperorbits
in the MBB reads

h̄

2eδB

∮
Cm

(k×dk) ·z+Γi(Cm) = 2π(m+1/2), (3)

where m is an integer and Γi(Cm) is the contour integral over
an effective gauge field Ai along a hyperorbit Cm. Chang and
Niu obtained the entire hierarchical structure of the Hofstadter
butterfly by approximating the integral in equation (3) with the
area of the magnetic Brillouin zone and replacing Γi(Cm) with
the Chern number. If σi = 0, the localized wavefunction ψi(k)
can be expanded as an absolutely convergent sum of Wannier
functions12, and the curvature of Ai vanishes identically. Thus,
Γi(Cm) indeed vanishes for any localized MBB regardless of the
shape of Cm. In addition, as our magnetic Brillouin zone is
[−π/L,π/L) ×[−π/L,π/L) by construction, the left-hand side
of equation (3) is found to be less than or equal to π. It follows
that m = 0 is the unique possibility for the MBB of a localized
state, that is, such an MBB does not split into multiple MBBs
when the magnetic field increases by δB (refs 17,18). Note that
both arguments are valid only if gaps between neighbouring MBBs
remain open as B increases by δB. As argued, this is expected to be
generically true.

A nice illustration of this property is given by the very
simple ‘disorder’ potential V (r) = t[cos(2πx/L) + cos(2πy/L)].
Of course, this leads to the well-known Hofstadter butterfly
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Figure 2 Lower half of a Hofstadter butterfly. The subbands for p= 1, q= N are
marked by thick blue lines. The Hall conductances in units of e 2/h are given for the
main gaps, which never close as B∼ q/p increases. The shaded blocks are typical
self-similar spectra generated by an MBB when an extra flux is inserted
(N→ N+1). As B increases, the new spectral weight always appears in the centre
of the Landau level.

spectrum, whose lower half is shown in Fig. 2. In accordance
with our discussion, we are only interested in magnetic fields B
corresponding to q/p = N , for large N , marked by thick lines in
the figure. As expected, there are N MBBs (for even N , the two
centralMBBs just touch).WhenN→N+1, a newMBB is spawned
from the central MBB(s), which is the only one with a non-zero
Chern number. Indeed, if N is odd, the central subband evolves
into two subbands, whereas if N is even, a new subband grows
out in the centre. The outside MBBs have zero Chern numbers and
indeed correspond to states localized about the bottom/top of this
‘disorder’ potential. As argued above, the spectrum of a general
disorder potential also has these properties, except that typically
there are severalMBBs with non-zero Chern numbers, one of which
will generate the new state when B increases by one magnetic flux.

To summarize, all of these arguments prove that the new states
generated in a disorder-broadened Landau level when the magnetic
field increases appear predominantly in the critical region. After
a state is expelled to the upper (lower) localized regions as B
increases, its order from the top (bottom) of the Landau level
remains essentially fixed.

This spectral ordering is the main ingredient needed for
understanding the results of recent single-electron transistor
(SET) measurements19,20 that investigate the charge distribution of
localized electronic states in two-dimensional electron systems2,3,
as well as of measurements of mesoscopic fluctuations of two-
terminal conductances4 and of Hall and longitudinal resistances5.
When plotted in the (ne,B) plane, the maxima in these quantities
are found to track straight lines with certain quantized values
for their slopes (see Fig. 3). This suggests that such ‘stripes’ are
an intrinsic aspect of IQHE phenomenology. In fact, SET and
transport experiments are strikingly complementary to each other.
When their results are put together, as shown schematically in
Fig. 3, we get a complete picture of the stripes.

So far it has been unanimously agreed that these stripes are
signatures of Coulomb-blockade physics in the localized states6–8.
We now argue that the main reason for these stripes’ appearance
is in fact the spectral ordering discussed above, which is a single-
electron effect. Interactions do play a role through screening, as
discussed below, but it is very much a secondary one.

We begin our discussion with the SET results that measure the
‘local inverse compressibility’ dµ/dne, which is a local d.c. response
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Figure 3 A schematic composite picture (computer-generated) of the stripes
observed experimentally in refs 2–5. States belonging to the nth Landau level are
located between the straight lines ne = nB/φ0 and ne = (n+1)B/φ0. In the upper
half of this Landau level, stripes are found to be parallel to ne = (n+1)B/φ0,
whereas in the lower half, stripes are parallel to ne = nB/φ0. Near the centre of the
Landau level, stripes of both slopes are visible and can cross each other. Refs 2,3
image the stripes close to the Landau level edges, whereas refs 4,5 image the
stripes near Landau level centres.

function dominated by localized states located under the SET tip.
Consider the evolution of a maximum due to one such localized
state, for example one that is found near the bottom of the nth
Landau level. If the magnetic field is increased by δB = φ0/L2, n
new states appear near the centres of the lower n Landau levels
(counting from n = 0). As a result, to bring the Fermi level back
to this particular state so as to see the same maximum, ne must be
increased by δne = n/L2. Thus, the maximummoves along a line of
slope δne/δB= n/φ0. For a state at the top of the nth Landau level,
however, the density change must be δne = (n+1)/L2, because the
spectral position of this state is also shifted upwards by the new
state appearing near the centre of the nth Landau level itself. Thus,
maxima due to these states will have a slope of (n+1)/φ0, precisely
as seen in experiments.

It is worth noting that Fig. 4. of ref. 8 shows that even if
the Coulomb interaction is turned off, stripes do appear with
essentially the right slopes. The authors argue that these are not in
agreement with experiment because the region occupied by them
increases with B, whereas in experiments we see a roughly constant
number of maxima, as shown in Fig. 3. Addition of Coulomb
interactions fixes this problem, but this is because of screening: their
results show that the stronger the interaction, the more effective the
screening, the fewer states (maxima) are seen. We therefore argue
that Coulomb interactions (screening) have the secondary role of
limiting the number of localized states ‘visible’ to the tip, but the
stripes’ slopes are determined purely by single-electron physics.

Note that this explanation relies essentially on the fact that
localized states tend to keep their spectral order with respect to
the top or bottom of the Landau level. Of course, states localized
about the same minimum or maximum in the disorder landscape
do keep their relative spectral ordering, but it is possible that the
energies of states localized in different spatial regions might cross
each other as B varies. Such events must be rare, as our simulations
in Fig. 1 show; in fact, we find that DN (i, i) and DN (i, i+ 1) get
closer to 1 in the relevant interval when N increases. However, if
such a rare crossing does take place for one of the states under the
SET tip, the maximum will shift by δne = ±1/L2 at the B value
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where the crossing occurs, after which the stripe resumes with the
correct slope. Such jumps would be impossible to measure.

The stripes in the transport measurements have the same
origin. Here, the mesoscopic fluctuations are caused by electronic
states that mediate the charge transport across the Hall bar, as
shown in refs 21,22. For example, the fluctuations in the two-
terminal conductance measured in ref. 4 are due to Jain–Kivelson
tunnelling23 through states located in the central region of the
sample. To see the same resonance, the Fermi level must be tuned to
match the energy of the state mediating the tunnelling, so we expect
to see the maxima following lines of quantized slopes in the (ne,B)
plane for the same reasons given above. However, unlike for SET
measurements, the Fermi level is now near the centre of the Landau
level, where the transition between quantum Hall plateaux occurs.
When an extra φ0 is inserted, there may be either n or n+ 1 new
states below the Fermi level. As a result, we expect to see stripes with
both slopes. Occasional crossings of stripes are also expected, when
the states mediating their tunnelling are more than a coherence
length Lφ apart, that is, there is no quantum interference between
these two tunnelling events. Finally, these arguments also explain
the stripes observed3 in the fractional quantum Hall effect24–26

(FQHE). It is well known that FQHE can be explained as the IQHE
of quasiparticles27. Our explanation of the stripes in the IQHE
regime is equally applicable to the FQHE regime, with electrons
replaced by quasiparticles.

Received 12 July 2007; accepted 16 October 2007; published 2 December 2007.

References
1. Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the

fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).
2. Ilani, S. et al. The microscopic nature of localization in the quantum Hall effect. Nature 427,

328–332 (2004).
3. Martin, J. et al. Localization of fractionally charged quasi-particles. Science 305, 980–983 (2004).
4. Cobden, D. H., Barnes, C. H. W. & Ford, C. J. B. Fluctuations and evidence for charging in the

quantum Hall effect. Phys. Rev. Lett. 82, 4695–4698 (1999).
5. Jouault, B. et al. Landau levels analysis by using symmetry properties of mesoscopic Hall bars. Phys.

Rev. B 76, 161302(R) (2007).

6. Pereira, A. L. C. & Chalker, J. T. Electrostatic theory for imaging experiments on local charges in
quantum Hall systems. Physica E 31, 155–159 (2006).

7. Struck, A. & Kramer, B. Electron correlations and single-particle physics in the integer quantum Hall
effect. Phys. Rev. Lett. 97, 106801 (2006).
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16. Středa, P. Theory of quantised Hall conductivity in two dimensions. J. Phys. C 15, L717–L721 (1982).
17. Chang, M.-C. & Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum. Phys. Rev. Lett. 75,

1348–1351 (1995).
18. Chang, M.-C. & Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical

dynamics in magnetic Bloch bands. Phys. Rev. B 53, 7010–7023 (1985).
19. Yoo, M. J. et al. Scanning single-electron transistor microscopy: Imaging individual charges. Science

276, 579–582 (1997).
20. Zhitenev, N. B. et al. Imaging of localized electronic states in the quantum Hall regime. Nature 404,

473–476 (2000).
21. Zhou, C. & Berciu, M. Resistance fluctuations near integer quantum Hall transitions in mesoscopic

samples. Europhys. Lett. 69, 602–608 (2005).
22. Zhou, C. & Berciu, M. Correlated mesoscopic fluctuations in integer quantum Hall transitions. Phys.

Rev. B 72, 085306 (2005).
23. Jain, J. K. & Kivelson, S. A. Quantum Hall effect in quasi one-dimensional systems: Resistance

fluctuations and breakdown. Phys. Rev. Lett. 60, 1542–1545 (1988).
24. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme

quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
25. Laughlin, R. B. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally

charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).
26. Haldane, F. D. M. Fractional quantization of the Hall effect: A hierarchy of incompressible quantum

fluid states. Phys. Rev. Lett. 51, 605–608 (1983).
27. Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63,

199–202 (1989).

Acknowledgements
We thank B. Jouault and X.-G. Zhang for many stimulating discussions and insightful opinions. This
research was carried out at the Center for Nanophase Materials Sciences, sponsored at Oak Ridge
National Laboratory by the Division of Scientific User Facilities, US Department of Energy. M.B.
acknowledges support from the Sloan Foundation, CIfAR Nanoelectronics and NSERC.
Correspondence and requests for materials should be addressed to C.Z.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

nature physics VOL 4 JANUARY 2008 www.nature.com/naturephysics 27

© 2008 Nature Publishing Group 

http://npg.nature.com/reprintsandpermissions/

	Spectral weight transfer in the integer quantum Hall effect and its consequences
	Main
	Acknowledgements
	References


