Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2

Abstract

Recent theories suggest that the quasiparticles that populate certain quantum Hall states should exhibit exotic braiding statistics that could be used to build topological quantum gates. Confined systems that support such states at a filling fraction ν=5/2 are of particular interest for testing these predictions. Here, we report transport measurements of just such a system, which consists of a quantum point contact (QPC) in a two-dimensional GaAs/AlGaAs electron gas that itself exhibits a well-developed fractional quantum Hall effect at a bulk filling fraction νbulk=5/2. We observe plateau-like features at an effective filling fraction of νQPC=5/2 for lithographic contact widths of 1.2 μm and 0.8 μm, but not 0.5 μm. Transport near νQPC=5/2 in the QPCs is consistent with a picture of chiral Luttinger-liquid edge states with inter-edge tunnelling, suggesting that an incompressible state at νQPC=5/2 forms in this confined geometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device and measurement set-up.
Figure 2: Bulk transport measurements, including T dependence.
Figure 3: Action of the QPC, compared with concurrent bulk measurements.
Figure 4: Observation of structure near quantized values in various QPCs.
Figure 5: Temperature dependence of the 5/2 state in the 1.2 μm QPC.
Figure 6: Dependence on d.c. current bias of the 5/2 and 7/3 states in the 1.2 μm QPC.

Similar content being viewed by others

References

  1. Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987).

    Article  ADS  Google Scholar 

  2. Eisenstein, J. P. et al. Collapse of the even-denominator fractional quantum Hall effect in tilted fields. Phys. Rev. Lett. 61, 997–1000 (1988).

    Article  ADS  Google Scholar 

  3. Eisenstein, J. P., Willett, R., Störmer, H. L., Pfeiffer, L. N. & West, K. W. Activation energies for the even-denominator fractional quantum Hall effect. Surf. Sci. 229, 31–33 (1990).

    Article  ADS  Google Scholar 

  4. Pan, W. et al. Exact quantization of the even-denominator fractional quantum Hall state at ν=5/2 Landau level filling factor. Phys. Rev. Lett. 83, 3530–3533 (1999).

    Article  ADS  Google Scholar 

  5. Pan, W. et al. Strongly anisotropic electronic transport at Landau level filling factor ν=9/2 and ν=5/2 under a tilted magnetic field. Phys. Rev. Lett. 83, 820–823 (1999).

    Article  ADS  Google Scholar 

  6. Lilly, M. P., Cooper, K. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Anisotropic states of two-dimensional electron systems in high Landau levels: Effect of an in-plane magnetic field. Phys. Rev. Lett. 83, 824–827 (1999).

    Article  ADS  Google Scholar 

  7. Haldane, F. D. M. & Rezayi, E. H. Spin-singlet wave function for the half-integral quantum Hall effect. Phys. Rev. Lett. 60, 956–959 (1988).

    Article  ADS  Google Scholar 

  8. Morf, R. H. Transition from quantum Hall to compressible states in the second Landau level: New light on the ν=5/2 enigma. Phys. Rev. Lett. 80, 1505–1508 (1998).

    Article  ADS  Google Scholar 

  9. Rezayi, E. H. & Haldane, F. D. M. Incompressible paired Hall state, stripe order, and the composite fermion liquid phase in half-filled Landau levels. Phys. Rev. Lett. 84, 4685–4688 (2000).

    Article  ADS  Google Scholar 

  10. Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  11. Greiter, M., Wen, X.-G. & Wilczek, F. Paired Hall state at half filling. Phys. Rev. Lett. 66, 3205–3208 (1991).

    Article  ADS  Google Scholar 

  12. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

    Article  ADS  Google Scholar 

  13. Scarola, V. W., Park, K. & Jain, J. K. Cooper instability of composite fermions. Nature 406, 863–865 (2000).

    Article  ADS  Google Scholar 

  14. Nayak, C. & Wilczek, F. 2n-quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states. Nucl. Phys. B 479, 529–553 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  15. Tserkovnyak, Y. & Simon, S. H. Monte Carlo evaluation of non-abelian statistics. Phys. Rev. Lett. 90, 016802 (2003).

    Article  ADS  Google Scholar 

  16. Stern, A., von Oppen, F. & Mariani, E. Geometric phases and quantum entanglement as building blocks for non-abelian quasiparticle statistics. Phys. Rev. B 70, 205338 (2004).

    Article  ADS  Google Scholar 

  17. Stern, A. & Halperin, B. I. Proposed experiments to probe the non-abelian ν=5/2 quantum Hall state. Phys. Rev. Lett. 96, 016802 (2006).

    Article  ADS  Google Scholar 

  18. Bonderson, P., Kitaev, A. & Shtengel, K. Detecting non-abelian statistics in the ν=5/2 fractional quantum Hall state. Phys. Rev. Lett. 96, 016803 (2006).

    Article  ADS  Google Scholar 

  19. Hou, C.-Y. & Chamon, C. ‘Wormhole’ geometry for entrapping topologically protected qubits in non-abelian quantum Hall states and probing them with voltage and noise measurements. Phys. Rev. Lett. 97, 146802 (2006).

    Article  ADS  Google Scholar 

  20. Chung, S. B. & Stone, M. Proposal for reading out anyon qubits in non-abelian ν=12/5 quantum Hall state. Phys. Rev. B 73, 245311 (2006).

    Article  ADS  Google Scholar 

  21. Feldman, D. E. & Kitaev, A. Detecting non-abelian statistics with an electronic Mach-Zender interferometer. Phys. Rev. Lett. 97, 186803 (2006).

    Article  ADS  Google Scholar 

  22. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. (N.Y.) 321, 2–111 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  23. Bonesteel, N. E., Hormozi, L., Zikos, G. & Simon, S. H. Braid topologies for quantum computation. Phys. Rev. Lett. 95, 140503 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  24. Das Sarma, S., Freedman, M. & Nayak, C. Topologically protected qubits from a possible non-abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166802 (2005).

    Article  ADS  Google Scholar 

  25. Harju, A., Saarikoski, H. & Räsänen, E. Half-integer filling-factor states in quantum dots. Phys. Rev. Lett. 96, 126805 (2006).

    Article  ADS  Google Scholar 

  26. Tőke, C. & Jain, J. K. Understanding the 5/2 fractional quantum Hall effect without the pfaffian wave function. Phys. Rev. Lett. 96, 246805 (2006).

    Article  ADS  Google Scholar 

  27. Fendley, P., Ludwig, A. W. W. & Saleur, H. Exact nonequilibrium transport through point contacts in quantum wires and fractional quantum Hall devices. Phys. Rev. B 52, 8934–8950 (1995).

    Article  ADS  Google Scholar 

  28. Roddaro, S., Pellegrini, V., Beltram, F., Pfeiffer, L. N. & West, K. W. Particle-hole symmetric Luttinger liquids in a quantum Hall circuit. Phys. Rev. Lett. 95, 156804 (2005).

    Article  ADS  Google Scholar 

  29. Fendley, P., Fisher, M. P. A. & Nayak, C. Dynamical disentanglement across a point contact in a non-abelian quantum Hall state. Phys. Rev. Lett. 97, 036801 (2006).

    Article  ADS  Google Scholar 

  30. D’Agosta, R., Vignale, G. & Raimondi, R. Temperature dependence of the tunneling amplitude between quantum Hall edges. Phys. Rev. Lett. 94, 086801 (2005).

    Article  ADS  Google Scholar 

  31. Büttiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986).

    Article  ADS  Google Scholar 

  32. Beenakker, C. W. J. & van Houten, H. Quantum transport in semiconductor nanostructures. Solid State Phys. 44, 1–128 (1991).

    Article  Google Scholar 

  33. Beenakker, C. W. J. Edge channels for the fractional quantum Hall effect. Phys. Rev. Lett. 64, 216–219 (1990).

    Article  ADS  Google Scholar 

  34. MacDonald, A. H. Edge states in the fractional-quantum-Hall-effect regime. Phys. Rev. Lett. 64, 220–223 (1990).

    Article  ADS  Google Scholar 

  35. Chang, A. M. & Cunningham, J. E. Transmission and reflection probabilities between quantum Hall effects and between ν=1 and ν=2/3 quantum Hall effects and between ν=2/3 and ν=1/3 effects. Solid State Commun. 72, 651–655 (1989).

    Article  ADS  Google Scholar 

  36. Kouwenhoven, L. P. et al. Selective population and detection of edge channels in the fractional quantum Hall regime. Phys. Rev. Lett. 64, 685–688 (1990).

    Article  ADS  Google Scholar 

  37. Wen, X. G. Electrodynamical properties of gapless edge excitations in the fractional quantum Hall states. Phys. Rev. Lett. 64, 2206–2209 (1990).

    Article  ADS  Google Scholar 

  38. Wang, J. K. & Goldman, V. J. Edge states in the fractional quantum Hall effect. Phys. Rev. Lett. 67, 749–752 (1991).

    Article  ADS  Google Scholar 

  39. Würtz, A. et al. Separately contacted edge states in the fractional quantum Hall regime. Physica E 22, 177–180 (2004).

    Article  ADS  Google Scholar 

  40. van Wees, B. J. et al. Quantized conductance of magnetoelectric subbands in ballistic point contacts. Phys. Rev. B 38, 3625–3627 (1988).

    Article  ADS  Google Scholar 

  41. Alphenaar, B. W., McEuen, P. L., Wheeler, R. G. & Sacks, R. N. Selective equilibration among the current-carrying states in the quantum Hall regime. Phys. Rev. Lett. 64, 677–680 (1990).

    Article  ADS  Google Scholar 

  42. Alphenaar, B. W., Williamson, J. G., van Houten, H., Beenakker, C. W. J. & Foxon, C. T. Observation of excess conductance of a constricted electron gas in the fractional quantum Hall regime. Phys. Rev. B 45, 3890–3893 (1992).

    Article  ADS  Google Scholar 

  43. Lal, S. On transport in quantum Hall systems with constrictions. Preprint at <http://www.arxiv.org/abs/condmat/0611218> (2006).

  44. Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997).

    Article  ADS  Google Scholar 

  45. de Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997).

    Article  ADS  Google Scholar 

  46. Camino, F. E., Zhou, W. & Goldman, V. J. Aharonov–Bohm superperiod in a laughlin quasiparticle interferometer. Phys. Rev. Lett. 95, 246802 (2005).

    Article  ADS  Google Scholar 

  47. Das Sarma, S. in Perspectives in Quantum Hall Effects (eds Das Sarma, S. & Pinczuk, A.) (Wiley, New York, 1997).

    Google Scholar 

  48. Eisenstein, J. P., Cooper, K. B., Pfeiffer, L. N. & West, K. W. Insulating and fractional quantum Hall states in the first excited Landau level. Phys. Rev. Lett. 88, 076801 (2002).

    Article  ADS  Google Scholar 

  49. Xia, J. S. et al. Electron correlation in the second Landau level: A competition between many nearly degenerate quantum phases. Phys. Rev. Lett. 93, 176809 (2004).

    Article  ADS  Google Scholar 

  50. Moon, K., Yi, H., Kane, C. L., Girvin, S. M. & Fisher, M. P. A. Resonant tunneling between quantum Hall edge states. Phys. Rev. Lett. 71, 4381–4384 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful discussions with M. Fisher, B. Halperin, A. Johnson, E.-A. Kim, B. Rosenow, A. Stern, X.-G. Wen and A. Yacoby. This research was supported in part by the Microsoft Corporation Project Q, HCRP at Harvard University, ARO (W911NF-05-1-0062), the NSEC program of the NSF (PHY-0117795) and NSF (DMR-0353209) at MIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Marcus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J., Radu, I., Zumbühl, D. et al. Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2. Nature Phys 3, 561–565 (2007). https://doi.org/10.1038/nphys658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing