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Nanoscale superconductors connected to normal metallic
electrodes provide a potential source of entangled electron
pairs1–5. Such states would arise from the splitting of Cooper
pairs in the superconductor into two electrons with opposite
spins, which then tunnel into different leads by means of a
process known as crossed Andreev reflection (refs 6–8). In an
actual system, the detection of these processes is hindered by
the elastic transmission of individual electrons between the
leads, which yields an opposite contribution to the non-local
conductance. Here we demonstrate that low-energy collective
excitations, which appear in superconducting structures of
reduced dimensionality9, can have a significant influence on
the transport properties of this type of hybrid nanostructure.
When an electron tunnels into the superconductor it can excite
such low-energy excitations that alter the balance between the
different electronic processes, leading to a dominance of one
over the other depending on the spatial symmetry of these
excitations. These findings help to clarify some intriguing
experimental results and provide future strategies for the
detection of entangled electron pairs in solid-state devices for
quantum computation.

A generic set-up for the study of non-local transport
through a superconductor is shown in Fig. 1a. It represents
a superconducting region attached to three normal electrodes.
Two of the leads (labelled 1 and 2 in Fig. 1a) are used to
inject a current while the voltage drop is measured on the
third one. The two basic microscopic processes contributing to
the non-local conductance are illustrated in Fig. 1c,d. In the
case of elastic cotunnelling (EC) processes, the injected electron
tunnels elastically into the third lead, whereas in the case of
crossed Andreev reflection (CAR) processes, it combines with
an electron emerging from the third lead to form a Cooper
pair in the superconductors. The probability of these processes
decays exponentially on the scale of the superconducting coherence
length, ξ, which can range between 10 and 100 nm for typical
superconductors used in experiments10,11. On the other hand,
the two processes yield opposite contributions to the non-local
conductance (conventionally the CAR contribution is taken as
positive) and, as demonstrated by previous theoretical studies12–14,
tend to cancel each other in the case of Bardeen–Cooper–Schrieffer
(BCS) superconductors weakly coupled to non-magnetic leads.
Surprisingly, recent experiments by Russo et al.11 have shown
that even in this case the subgap non-local conductance can be

appreciably large, exhibiting an intriguing behaviour in which
either process can dominate depending on the energy of the
injected electrons. This behaviour cannot be accounted for by the
existing non-interacting theories.

The importance of interactions in breaking the balance between
EC and CAR processes can be understood by considering the case
where the superconducting region is sufficiently small and can be
characterized by a finite charging energy, Ec = e2/(2C), where C
denotes the corresponding capacitance. As shown in Fig. 1c, EC
processes take place through a virtual state that will be shifted
upwards by the Coulomb energy. The process, however, would
not be blocked for any value of the applied voltage, as the initial
and final states have the same energy. In contrast, CAR processes
demand that two electrons tunnel into the superconducting region
forming a Cooper pair, a process which requires an extra energy of
4Ec. Thus, the non-local conductance has a finite (negative) value
for a voltage, V , smaller than 4Ec/e where EC processes dominate,
whereas it vanishes for eV > 4Ec when both processes tend to cancel
each other. These predictions coincide with the results of a more
detailed calculation on the basis of the theory discussed below. They
also provide a first simple example in which the role of interactions
could be tested experimentally.

For a quantitative analysis of the influence of interactions we
describe the system by a hamiltonian, Ĥ = ĤS + Ĥ leads + ĤT + Ĥ env.
The first three terms correspond to the electronic degrees of
freedom. ĤS is the usual BCS hamiltonian for the superconducting
region and Ĥ leads describes the normal leads that we label with an
index n. The tunnelling of electrons between the leads and the
superconductor is described by ĤT = ∑

n ĤT ,n, with

ĤT ,n =
∑

σ

∫
Sn

d2r
[

vnψ̂
†
ln,σ (r)ψ̂sn,σ (r)eiφ̂n (r) +h.c.

]
,

where the integral is taken over the junction area Sn, ψ̂
†
ln,σ (r)

and ψ̂†
sn,σ

(r) are electron creation operators on the two sides
of the junction and φ̂n(r) is the corresponding phase drop that
is conjugate to the charge density on the junction Q̂n(r), that
is, [φ̂n(r),Qn(r′)] = ieδ(r − r′). h.c. is the hermitian conjugate.
The dynamics of these phase operators is determined by the
hamiltonian Ĥ env describing the electromagnetic environment that
characterizes the actual experimental set-up. It is important to
note that, owing to the typical distances between the leads in the
experiments, which cannot be much larger than ξ, correlations
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Figure 1 Typical set-ups and basic microscopic processes in non-local transport through a superconductor. a, Schematic representation of a generic multiterminal
geometry where a superconducting region (S) is coupled to several metallic leads (1,2,3). b, Double planar normal/superconducting/normal junction geometry studied in
ref. 11. c,d, Pictorial description of EC (c) and CAR (d) processes in energy space. e,f, Feynman diagrams corresponding to the calculation of the non-local conductance to
fourth order taking into account interactions mediated by the electromagnetic environment. Crosses indicate the tunnelling events, solid lines with an arrow represent the
normal and anomalous propagators and wavy lines indicate phase correlators.

between voltage fluctuations on different junctions cannot be
neglected, that is, correlation functions of the type 〈φ̂n φ̂m〉, with
n �= m are non-zero. In addition, the reduced dimensions of the
superconducting region can give rise to the presence of collective
modes within the superconducting gap, which can dominate the
behaviour of the phase correlations.

To obtain the transport properties of this model we use
the Keldysh–Nambu Green functions formalism, which is well
adapted to analyse non-equilibrium situations in the presence of
superconductivity (for details see Supplementary Information).
The contributions from EC and CAR processes to the non-local
conductance Gnm, that is, the variation of the current through
lead n due to a voltage applied on lead m, in the tunnel limit is
represented by the type of diagrams shown in Fig. 1e,f. The solid
lines with an arrow represent the electron propagators, whereas
the wavy lines describe the coupling with the environment, that
is, they denote the phase correlators of the type 〈eiφ̂n e−iφ̂m 〉. Let
us first consider the simplest case where the environment can
be characterized by a single electromagnetic mode of frequency
ω0. We can further assume that the leads are coupled to the
superconducting region through point contacts as illustrated in
Fig. 2a,b. Two opposite situations can be distinguished depending
on the spatial symmetry of the electromagnetic mode under
consideration: it can lead to either symmetric or antisymmetric
voltage fluctuations on the two junctions. In the symmetric case, for
clean BCS superconductors and assuming that h̄ω0 is much smaller

than the superconducting gap, Δ, but larger than the charging
charging energy, Ec, of the tunnel junctions, at zero temperature
we obtain (see the Supplementary Information)

Gnm � − Gn Gm

G0

e−2R/ξ

(kFR)2

[
cos2(kFR)

− (1− z0θ(h̄ω0 −eV ))sin2(kFR)
]
. (1)

Here Gn(m) is the normal conductance of the junction
n(m), R is the distance separating the leads, kF is the Fermi
wavevector, G0 = 2e2/h is the conductance quantum and V is the
voltage applied on lead m. The term proportional to cos2(kFR)
corresponds to the EC contribution, whereas the sin2(kFR) term
arises from CAR processes. The parameter z0 = Ec/h̄ω0 measures
the coupling to the electromagnetic mode. Expression (1) is the
lowest order in z0 of the general result for arbitrary values of z0

presented in the Supplementary Information. It is worth noting
that this expression reproduces the non-interacting result12 for
z0 = 0, where a complete cancellation between CAR and EC
contributions takes place on averaging over the Fermi wavelength
scale. For finite but small z0, the balance between EC and CAR
is broken: for eV smaller than h̄ω0 the CAR processes become
suppressed and non-local transport is dominated by the EC
contribution, whereas for eV > h̄ω0 both contributions tend to
cancel, as in the non-interacting case. The suppression of the CAR
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Figure 2 Effect of interactions in the non-local conductance. a,b, Pictorial representation of the effect of interactions mediated by electromagnetic modes of different
symmetry on the non-local conductance between two point contacts. The arrows represent the phase gradient within the superconductor. c,d, Whereas symmetric modes
tend to suppress CAR processes (c), the antisymmetric ones suppress the EC contribution (d).

contribution is due to the impossibility of such processes to occur
without producing a real excitation of the environment, as in the
constant charging energy example.

The situation is the opposite in the case of an antisymmetric
mode. The analogue of expression to equation (1) for this case is
(see the Supplementary Information)

Gnm � − Gn Gm

G0

e−2R/ξ

(kFR)2

[
(1− z0θ(h̄ω0 −eV ))

× cos2(kFR)− sin2(kFR)
]
, (2)

which corresponds to a suppression of EC (instead of CAR) at
low voltages. The different effect of symmetric and antisymmetric
modes is schematically illustrated in Fig. 2c,d.

The electromagnetic environment in a general experimental
situation can be described as a collection of modes. For instance,
let us consider the case of a planar geometry similar to the one in
the experiments of ref. 11 (represented by Fig. 1b), consisting of a
superconducting layer of thickness d ∼> ξ coupled to two normal
leads by tunnel junctions. For simplicity, we describe them as
infinite planes. This situation is characterized by the presence of
propagating modes along the superconducting/normal junctions,
which can be derived from the following model hamiltonian

Ĥ env =
(

h̄

2e

)2∫
d3r

(∇ φ̂)2

2Ld
+

∫
d2r

1

2C�

(
Q̂2

L + Q̂2
R

)
, (3)

where the term containing the phase gradient describes the kinetic
energy associated with the supercurrents in the superconducting

film, L being its total inductance, whereas the second term is
the Coulomb energy of the charge accumulated on the junctions,
denoted by Q̂L,R. The junctions are assumed to be symmetric
with capacitance C� per unit area and with cross-section S.
In writing this hamiltonian, we are also assuming that long-
range Coulomb interactions are screened by the normal electrodes
acting as ground planes15. The low-energy modes that result
from this model correspond to symmetric and antisymmetric
voltage fluctuations on the junctions, with dispersion relations
ω1(q) = cs

√
(qtanh qd)/d and ω2(q) = cs

√
q/(d tanh qd), where

q is the wavevector in the direction parallel to the film and
cs = 1/

√
LC� . Note that for small q the symmetric mode exhibits a

linear dispersion with phase velocity cs, whereas the antisymmetric
one tends to a finite frequency ω0 = cs/d in the limit q → 0. This
description of the low-energy modes captures the essential features
of a detailed calculation based on Maxwell equations for the double
planar junction geometry (see the Supplementary information).

We can roughly estimate the order of magnitude of the
parameters in Ĥ env for the experimental situation. Thus, C� can
be obtained from the typical charging energy for an oxide barrier
tunnel junction EcS ∼ 1 μeV × μm2 and L can be estimated as
μ0l

2/d, where l is the field penetration depth16. The actual value
of l for a Nb film is strongly dependent on its thickness, degree
of disorder and it is also influenced by the properties of the non-
superconducting substrate on which it is deposited17. Reported
values range between 100 nm and 1 μm for d ∼ 10–100 nm
(refs 17,18). Within this range of parameters, the lowest energy
of the antisymmetric mode h̄ω0 can be of the order of the
superconducting gap in Nb, even for the smaller film thickness
analysed in ref. 11.
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Figure 3 Non-local conductance in double planar junction geometry.
a, Contribution to the non-local conductance from modes with a given wavevector in
the double planar junction geometry for kBT= 0.01Δ and h̄ω0 = 0.4Δ. The values
of q are given in units of Δ/ h̄cs . The arrows indicate the energy of symmetric and
antisymmetric modes for q= 0.1. b, Temperature and voltage dependence of the
total non-local conductance. The temperature values are given in units of Δ/kB.
The arrow indicates the energy h̄ω0 for the lowest antisymmetric mode.

To obtain the non-local conductance, GLR, measured at the left
interface when a voltage, V , is applied on the right junction, we
extend the theory developed for the single mode case, linearizing
with respect to the coupling parameters z1,2(q) = Ec/h̄ω1,2(q),
which is justified for the range of parameters estimated above. We
thus obtain

GLR = 4π
GL GR

Sk2
FG0

E1(2d/ξ)
∑

q,α=1,2

(−1)αzα(q)
[(

N (ωα(q))+1
)

× (
F(ωα(q))+1

)+N (ωα(q))
(
F(−ωα(q))+1

)]
,

where GL,R is the normal conductance of each junction,
F(ε) = ∫

dω
(
∂f (ω)/∂ω

) [f (ω + ε − V ) + f (ω + ε + V )] is a
thermal smearing kernel arising from the Fermi distribution f (ω),
whereas N (ωα) is the Bose distribution function. The planar

geometry leads to the factor E1(2d/ξ), where E1 denotes the
exponential integral function. This leads to an exponential decay
of the non-local conductance when increasing d.

To understand the behaviour of GLR as a function of voltage
it is convenient to first analyse the contribution arising from
a given wavevector q. This is shown in Fig. 3a for temperature
T = 10−2Δ and h̄ω0 = 0.4Δ. The behaviour for the different
wavectors is qualitatively similar: for eV < h̄ω1, h̄ω2 the EC
processes dominate, whereas CAR becomes more important in the
voltage window h̄ω1 < eV < h̄ω2 and finally both contributions
cancel for eV > h̄ω2.

The sum of all contributions yields a non-local conductance
that is dominated by EC processes at V → 0 and decreases
almost linearly with V until eV � h̄ω0. Close to this point
there is a change of sign in GLR indicating the dominance of
CAR processes. We can therefore associate h̄ω0 with the crossing
energy from EC- to CAR-dominated regimes. Figure 3b shows
the voltage dependence of GLR for different temperatures. As
can be observed, the imbalance between EC and CAR processes
driven by the electromagnetic modes is less pronounced for
increasing temperature. The characteristic temperature for the
suppression of the non-local conductance is set by h̄ω0/kB.
Note that the temperature dependence arises mainly from the
smearing of the Fermi factors. The overall features of the
curves in Fig. 3, including the weak temperature dependence
of the crossing energy, are in qualitative agreement with the
results of ref. 11. Moreover, the magnitude of the non-local
conductance predicted by our model is in reasonable agreement
with the experimental values. For instance, the ratio GLR/Gs

L,R

between the non-local and the direct conductances in the
superconducting state at zero voltage and zero temperature is
0.75 E1(2d/ξ)(EcSω0/h̄c2

s ), which yields values ∼10−3 that are
close to the experimental ones for the parameters estimated
above. A more quantitative description of the experimental
results may require the inclusion of higher order terms in the
barrier transparency, which is beyond the scope of this work.
Note, however, that weak tunnelling conditions are ideal for the
observation of true CAR processes that would be masked by
non-equilibrium effects when increasing the barrier transmission,
as discussed in ref. 19. It is also worth mentioning recent
experiments by Beckmann et al.20 where a behaviour similar to
the one predicted by our theory is observed when decreasing the
barrier transparency.

In summary, we have shown that electron interactions
mediated by electromagnetic excitations lead to an imbalance
between EC and CAR processes. Electromagnetic modes can
either suppress CAR or EC processes depending on their spatial
symmetry. Taking into account that these low-energy excitations
are strongly dependent on the geometrical characteristics of the
multiterminal device, these findings open the possibility to control
non-local transport processes through a superconductor by an
appropriate design of the experimental set-up. For instance, one
possibility would be to introduce an additional tunnel junction
inside the superconducting film in the planar double barrier
geometry. This normal/superconducting/superconducting/normal
nanostructure would enable us to control the dispersion relation
of the electromagnetic modes by varying the Josephson coupling
between the superconducting layers by means of a magnetic
field. Similar effects could be achieved by means of layered
superconductors (either high Tc or organic compounds) that
are known to exhibit bulk collective excitations with frequencies
below the superconducting gap21. Let us finally point out that
the high sensitivity of non-local transport to the electromagnetic
modes could be used as a tool to analyse these excitations in
hybrid nanostructures.
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