Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Attosecond science

Abstract

The motion of electrons on the atomic scale has been hidden from direct experimental access until recently. We review the revolution in technology that opened the door to real-time observation and time-domain control of atomic-scale electron dynamics, and address the expected implications of having the tools to monitor electrons with sub-atomic resolution in both space and time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shorter and shorter.
Figure 2: Creating an attosecond pulse.
Figure 3: Generation of a single or twin attosecond photon pulse.
Figure 4: Orbital tomography.
Figure 5: Excitation and relaxation.

Similar content being viewed by others

References

  1. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  2. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  3. Brabec, T. & Krausz, F. Intense few cycle light pulses: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  4. Zewail, A. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).

    Article  Google Scholar 

  5. Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002).

    Article  ADS  Google Scholar 

  6. Zuo, T., Bandrauk, A. D. & Corkum, P. B. Laser induced electron diffraction: a new tool for probing ultrafast molecular dynamics. Chem. Phys. Lett. 259, 313–320 (1996).

    Article  ADS  Google Scholar 

  7. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  8. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  9. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    Article  ADS  Google Scholar 

  10. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    Article  ADS  Google Scholar 

  11. Milosevic, N., Corkum, P. B. & Brabec, T. How to use lasers for imaging attosecond dynamics of nuclear processes. Phys. Rev. Lett. 92, 013002 (2004).

    Article  ADS  Google Scholar 

  12. Corkum, P. B. A plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  13. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. (Multiphonon absorption processes and ionization probability for atoms and solids in strong electromagnetic field.) Sov. Phys. JETP 20, 1307–1314 (1965).

    Google Scholar 

  14. Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191–1194 (1986).

    Google Scholar 

  15. Yudin, G. L. & Ivanov, M. Y. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001).

    Article  ADS  Google Scholar 

  16. Yudin, G. L. & Ivanov, M. Y. Physics of correlated double ionization of atoms in intense laser fields: quasistatic tunneling limit. Phys. Rev. A 63, 033404 (2001).

    Article  ADS  Google Scholar 

  17. Corkum, P. B., Ivanov, M. Y. & Burnett, N. H. Sub-femtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

    Article  ADS  Google Scholar 

  18. Dudovich, N. et al. Measuring and controlling the birth of attosecond pulses. Nature Phys. 2, 781–786 (2006).

    Article  ADS  Google Scholar 

  19. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article  ADS  Google Scholar 

  20. Seres, J. et al. Source of coherent kiloelectronvolt X-rays. Nature 433, 596 (2005).

    Article  ADS  Google Scholar 

  21. Chang, Z. Single attosecond pulse and XUV supercontinuum in the high-order harmonic plateau. Phys. Rev. A 70, 043802 (2004).

    Article  ADS  Google Scholar 

  22. Sola, I. J. et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nature Phys. 2, 319–322 (2006).

    Article  ADS  Google Scholar 

  23. Lopez-Martens, R. et al. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94, 033001 (2005).

    Article  ADS  Google Scholar 

  24. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  25. Pfeifer, T. et al. Heterodyne mixing of laser fields for temporal gating of high-order harmonic generation. Phys. Rev. Lett. 97, 163901 (2006).

    Article  ADS  Google Scholar 

  26. Oishi, Y., Kaku, M., Suda, A., Kannari, F. & Midorikawa, K. Generation of extreme ultraviolet continuum radiation driven by a sub-10-fs two-color field. Opt. Exp. 14, 7230–7237 (2006).

    Article  ADS  Google Scholar 

  27. Diels, J.-C. & Rudolph, W. Ultrashort laser pulse phenomena: fundamentals, techniques and applications on a femtosecond time scale. (Academic, Boston, 1996).

  28. Bradley, D. J., Liddy, B. & Sleat, W. E. Direct linear measurement of ultrashort light pulses with a picosecond streak camera. Opt. Commun. 2, 391–395 (1971).

    Article  ADS  Google Scholar 

  29. Schelev, M. Ya., Richardson, M. C. & Alcock, A. J. Image-converter streak camera with picosecond resolution. Appl. Phys. Lett. 18, 354–357 (1971).

    Article  ADS  Google Scholar 

  30. Tzallas, P. et al. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).

    Article  ADS  Google Scholar 

  31. Sekikawa, T. et al. Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004).

    Article  ADS  Google Scholar 

  32. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  33. Kienberger, R. et al. Steering attosecond electron wave packets with light. Science 297, 1144–1148 (2002).

    Article  ADS  Google Scholar 

  34. Quéré, F. et al. Attosecond spectral shearing interferometry. Phys. Rev. Lett. 90, 073902 (2003).

    Article  ADS  Google Scholar 

  35. Hargittai, I. & Hargittai, M. (eds) Stereochemical Applications of Gas-Phase Electron Diffraction. (VCH, Weinheim, 1988).

    MATH  Google Scholar 

  36. Zuo, T., Bandrauk, A. D. & Corkum, P. B. Laser induced electron diffraction: A new tool for probing ultrafast molecular dynamics. Chem. Phys. Lett. 259, 313–320 (1996).

    Article  ADS  Google Scholar 

  37. Lein, M., Marangos, J. P. & Knight, P. L. Electron diffraction in above-threshold ionization of molecules. Phys. Rev. A 66, 051404 (2002).

    Article  ADS  Google Scholar 

  38. Yurchenko, S. N. et al. Laser-induced interference, focusing, and diffraction of rescattering molecular photoelectrons. Phys. Rev. Lett. 93, 223003 (2004).

    Article  ADS  Google Scholar 

  39. Spanner, M. et al. Reading diffraction images in strong field ionization of diatomic molecules. J. Phys. B 37, L243–L250 (2004).

    Article  Google Scholar 

  40. Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    Article  ADS  Google Scholar 

  41. Kanai, T., Minemoto, S. & Sakai, H., Quantum interference during high-order harmonic generation from aligned molecules. Nature 435, 470–474 (2005).

    Article  ADS  Google Scholar 

  42. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science, 312, 424–427 (2006).

    Article  ADS  Google Scholar 

  43. Yudin, G. L. et al. Attosecond photoionization of coherently coupled electronic states. Phys. Rev. A 72, 051401 (2005).

    Article  ADS  Google Scholar 

  44. Remetter, T. et al. Attosecond electron wave packet interferometry. Nature Phys. 2, 323–326 (2006).

    Article  ADS  Google Scholar 

  45. Yudin, G. L., Bandrauk, A. D. & Corkum, P. B. Chirped attosecond photoelectron spectroscopy. Phys. Rev. Lett. 96, 063002 (2006).

    Article  ADS  Google Scholar 

  46. Niikura, H., Villeneuve, D. M. & Corkum, P. B. Mapping attosecond electron wave packet motion. Phys. Rev Lett. 94, 083003 (2005).

    Article  ADS  Google Scholar 

  47. Kling, M. et al. Control of electron localization in molecular dissociation. Science 312, 246–248 (2006).

    Article  ADS  Google Scholar 

  48. Zeidler, D. et al. Controlling attosecond double ionization dynamics via molecular alignment. Phys. Rev. Lett. 95, 203003 (2005).

    Article  ADS  Google Scholar 

  49. Weckenbrock, M. et al. Electron–electron momentum exchange in strong field double ionization. Phys. Rev. Lett. 91, 123004 (2003).

    Article  ADS  Google Scholar 

  50. Resch, K. J., Lundeen, J. S. & Steinberg, A. M. Experimental observation of nonclassical effects on single-photon detection rates. Phys. Rev. A 63, 020102 (2000).

    Article  Google Scholar 

  51. Niikura, H. et al. Probing molecular dynamics with attoscecond resolution using correlated wave packet pairs. Nature 421, 826–829 (2003).

    Article  ADS  Google Scholar 

  52. Rudenko, A. et al. Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms. Phys. Rev. Lett. 93, 253001 (2004).

    Article  ADS  Google Scholar 

  53. Liu, X. et al. Attosecond electron thermalization by laser-driven electron re-collision in atoms. J. Phys. B. 39, L305–L311 (2006).

    Article  Google Scholar 

  54. Fuji, T. et al. Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 μm. Opt. Lett. 31, 1103–1105 (2006).

    Article  ADS  Google Scholar 

  55. Hauri, C. P. et al. Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament. Opt. Lett. 32, 868–870 (2007).

    Article  ADS  Google Scholar 

  56. Dromey, B. et al. High harmonic generation in the relativistic limit. Nature Phys. 2, 456–459 (2006).

    Article  ADS  Google Scholar 

  57. Naumova, N. M., Nees, J. A., Sokolov, I. V., Hou, B. & Mourou, G. Relativistic generation of isolated attosecond pulses in a λ3 focal volume. Phys. Rev. Lett. 92, 063902 (2004).

    Article  ADS  Google Scholar 

  58. Tsakiris, G. D., Eidmann, K., Meyer-ter-Vehn, J. & Krausz, F. Route to intense single attosecond pulses. New J. Phys. 8, 19 (2006).

    Article  ADS  Google Scholar 

  59. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    Article  ADS  Google Scholar 

  60. Distant charge transport. Proc. Natl Acad. Sci. 102 (special feature), 3533–3592 (2005).

  61. Zholents, A. A. & Fawley, W. M. Proposal for intense attosecond radiation from an X-ray free-electron laser. Phys. Rev. Lett. 92, 224801 (2004).

    Article  ADS  Google Scholar 

  62. Fill, E., Veisz, L., Apolonski, A. & Krausz, F. Sub-fs electron pulses for ultrafast electron diffraction. New J. Phys. 8, 272 (2006).

    Article  ADS  Google Scholar 

  63. Pfeifer, T., Spielmann, C. & Gerber, G. Femtosecond X-ray science. Rep. Prog. Phys. 69, 443–505 (2006).

    Article  ADS  Google Scholar 

  64. Zewail, A. 4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem. 57, 65–103 (2006).

    Article  ADS  Google Scholar 

  65. Levesque, J. & Corkum, P. B. Attosecond science and technology. Can. J. Phys. 84, 1–18 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the DFG cluster of excellence Munich Centre for Advanced Photonics – MAP (www.munich-photonics.de).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. B. Corkum or Ferenc Krausz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corkum, P., Krausz, F. Attosecond science. Nature Phys 3, 381–387 (2007). https://doi.org/10.1038/nphys620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing