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Measurement of growing dynamical length
scales and prediction of the jamming
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Supercooled liquids and dense colloidal suspensions exhibit
anomalous behaviour known as ‘spatially heterogeneous
dynamics’ (SHD), which becomes increasingly pronounced as
the system approaches the glass transition'”. Recently, the
observation of SHD in confined granular packings under slow
shear near the onset of jamming has bolstered speculation that
the two transitions are related*®. Here, we report measurements
of SHD in a system of air-driven granular beads, as a function of
both density and effective temperature. On approach to jamming,
the dynamics becomes progressively slower and more spatially
heterogeneous. The rapid growth of timescales and dynamical
length scales characterizing the heterogeneities can be described
both by mode-coupling theory’ and the Vogel-Tammann-
Fulcher (VTF) equation®, such as in glass-forming liquids. The
value of the control variable at the VTF transition coincides with
point J (refs 9,10), the random close-packed jamming density at
which all motion ceases, in analogy to a zero-temperature ideal
glass transition. Our findings demonstrate further universality
of the jamming concept and provide a significant step forward in
the quest for a unified theory of jamming in disparate systems.

At low temperature, high density and low driving, the
constituent particles in supercooled liquids’, dense colloids*® and
granular packings*®, respectively, are nearly locked into a single
disordered configuration in which motion is heterogeneous in
space and time. Dynamics in these systems may be governed
by proximity to a generic ‘jamming transition'", beyond which
rearrangements cease and the viscosity diverges. Key features
of spatially heterogeneous dynamics (SHD) on approach to the
transition include unusual correlations' in which particles move
in one-dimensional paths (‘strings’"?) that aggregate into clusters',
and dynamical correlations as measured by a dynamic four-point
susceptibility y, (refs 15-17). Clusters of strings arise naturally in
dynamic facilitation'® theory and the random first-order theory of
glasses'’; their shape reflects the fractal nature of dynamical motion
in these systems. Strings are also a crucial ingredient in a recent
theory of liquid dynamics near the glass transition®.

Recent studies demonstrate that close-packed granular systems
under slow shear exhibit SHD as well**, bolstering speculation
that liquids and granular matter share dynamical similarities on
approach to the jammed state. However, the universality of the
jamming hypothesis has not yet been tested in terms of variation in
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the hallmark dynamical heterogeneities as a function of the control
parameter. Here, we present the first simultaneous measurements
in any experimental system of the growth of the cluster correlation
length, string length, four-point correlation length and their
characteristic timescales by varying the control parameter. We show
that the SHD observed in a far-from-equilibrium, athermal system
of air-fluidized granular beads is essentially indistinguishable from
that observed in thermal systems such as supercooled liquids and
dense colloidal suspensions. Moreover, we show that theoretical
models developed for the glass transition can be used to describe
our granular system, and predict a mode-coupling-like transition
and, more importantly, the jamming transition packing fraction,
known as point J (refs 9,10), from quantities characterizing SHD.

We characterize the spatiotemporally heterogeneous nature
of dynamics in an athermal, far-from-equilibrium system of air-
driven steel spheres on approach to jamming. Compared with
sheared or shaken granular systems, in which energy is injected
at the boundaries, in air-driven systems the energy input is
uniform in space and time. Our granular system consists of a
1:1 bidisperse mixture of steel beads of diameters d, =0.318 cm
and d, = 0.397 cm, with respective masses of 0.130 and 0.266 g,
confined to a circular region of diameter 17.7 cm. The packing
density is varied from an area fraction of ¢ =0.597 to ¢ =0.773
by changing the total number of beads from 1,470 to 1,904. Bead
motion is restricted to rolling within a horizontal plane, and is
excited by an upward flow of air at a fixed superficial flow speed
of 545 cms™'. Bead positions are identified by reflecting light from
their chrome surface to a camera three feet above. The duration
of the experimental runs is 20 min. In contrast with the molecules
in a supercooled liquid, here the particles are macroscopic objects
driven at random by a continuous input of energy. Consequently,
the speed distributions are non-maxwellian, and the average kinetic
energies of the two bead species are unequal. Nevertheless, as
reported previously”, the system mimics a simple liquid for low ¢
and exhibits tell-tale changes in the average structure and dynamics
at increasing packing densities.

Dynamical characteristics for an example case, ¢ = 0.773,
are shown in Fig. la—d. The mean-squared displacement versus
time interval (delay time), Fig. 1a, averaged over all start times
and all beads, is perhaps the most familiar quantity. It shows
ballistic motion at short times, diffusive motion at late times
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Figure 1 Bead dynamics at area fraction ¢ = 0.773 as a function of delay time. a, Mean-square displacement {r?(t)). b, Number-average mobile bead cluster size
S.(t), ¢, Number-average string length L(t). d, Self-contribution to the four-point susceptibility x55(t). e, An instantaneous bead configuration where the colour of the beads
indicates the mobility over a time interval of 12 s (the timescale for both maximum cluster size and string length). The 10% most mobile beads are red; note that they form
clusters. Beads moving in strings have vectors superimposed to indicate their directional motion. Note that the dynamics are spatially heterogeneous.

and a plateau of sub-diffusive motion at intermediate times that
is indicative of caging. Although informative, the mean-squared
displacement cannot distinguish uniform from heterogeneous
dynamics. For this, we carry out three measurements developed
for supercooled liquids. The first involves clusters of beads that
are ‘mobile} that is, which have displacements ranking among
the top 10% of all bead displacements in a given delay time*
(in this system, 10% gives the largest distinction between mobile
and immobile beads at all packing densities). The configuration
shown in Fig. le, where beads are colour-coded according to
mobility, demonstrates that the mobile beads are not distributed
at random; rather, mobile and immobile beads are clustered and
spatially separated, indicating spatially heterogeneous dynamics.
One measure of SHD is thus the average size of mobile clusters,
Sc(t), defined as the average number of neighbouring mobile
beads for a given time interval f. The motion within a mobile
cluster, shown by the displacement vectors in Fig. le, tends to
be correlated into quasi-one-dimensional paths called ‘strings'’
Thus, a second measure of SHD is the average string length,
L,(t), defined in terms of the number of beads that, within

nature physics | VOL 3 | APRIL 2007 | www.nature.com/naturephysics

a time interval ¢, replace the initial positions of neighbouring
beads to within a tolerance of 0.3d, (ref. 13). A third measure of
SHD may be constructed from a four-point susceptibility x,(t),
which measures the extent to which the dynamics at any two
points in space are correlated within a time interval®. The self-
contribution x3°(t) dominates the general result'® and is computed
from the variance of the self-overlap order parameter gs(t),
which decays from one to zero: x3°(t) = N[{gs(#)*) — {(gs(1))*],
where g5(t) = (1/N) Zfil w(|ri(t) —r;(0)]), w = 1(0) if
|ri(t) —r;(0)] < (>)0.5d,, N is the total number of beads and
r;(t) is the position of bead i at time t; averages are taken over all
beads and over all start times.

The example results in Fig. 1b—d for the cluster size S (), the
string length L.(#) and the four-point susceptibility x3°(#), all
exhibit well-defined peaks as a function of time interval, as found
in glass-forming liquids. The locations of the peaks indicate the
time interval over which the dynamics are most heterogeneous,
and the heights of the peaks indicate the spatial extent or ‘strength’
of the heterogeneities. As with glass-forming liquids'**% and
colloids®, the cluster size and string length are largest at the
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Figure 2 Size distributions of clusters and strings. a,b, Distribution of cluster
sizes (@) and string lengths (b) for three values of control variable ¢. The cluster size
distribution approaches a power law with increasing ¢ (the solid lines indicate fits
by the power law multiplied by an exponential cutoff), whereas the string length
distribution is exponential.

crossover between caged and diffusive motion, whereas x5 (¢) (and
Xx4(1)) peaks later, in the so-called alpha or structural relaxation
regime'®*. The athermal air-fluidized beads therefore exhibit
spatially heterogeneous dynamics that is identical to thermal glass-
forming systems with respect to these three measures.

Now that spatially heterogeneous dynamics is established for
gas-fluidized beads, we turn to its variation as a function of
control parameter. The distribution of cluster sizes at the peak
time interval, shown in Fig. 2a for three different packing densities
¢, approaches a power law P(n) ~n ", 1 =154+0.3 as ¢
is increased. This is consistent with the percolation of mobile
bead clusters; similar power laws have been observed in colloids®
and in simulations of supercooled liquids**** near the mode-
coupling temperature. Furthermore, the distribution of string
lengths at the peak time interval, shown in Fig. 2b, is exponential,
P(l) ~ exp(—1/1y), at all values of ¢, where [, is set by the
average string length. This is consistent with behaviour reported
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Figure 3 Variation of SHD as a function of control variable ¢. a—c, Cluster

size (a), string length (b) and self-contribution to the four-point susceptibility (c), all
as a function of time interval ¢, for a sequence of area fractions ¢. In order of
increasing peak height: ¢ = 0.597, 0.633, 0.647, 0.669, 0.693, 0.722, 0.742,
0.762, 0.773. The insets in a and b show collapse of all data sets on scaling by the
peak heights and peak times.

in simulations of several supercooled liquids'***?’. We note that
the average cluster size is not much larger than the average string
length, although the largest clusters observed (~100 particles) are
substantially larger than the largest string observed (~30 particles)
(not shown).

Results for S.(t), L,(t) and x3°(¢) versus ¢ are shown in
Fig. 3a—c for a sequence of different packing densities ¢. When
beads are added to the system, the average effective temperature
also decreases, resulting in a trajectory in the (¢, T.s) phase
diagram that heads towards point J, the zero-temperature jamming
transition previously found for this system at ¢ = 0.83, which
is coincident with the packing density at which the system is
random close-packed. As the motion becomes more restricted,
the peaks in all three measures of SHD grow and move to later
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Figure 4 Dependence of dynamic timescales and length scales on packing density ¢. a, Log—log plot of dynamical correlation lengths versus 1/|¢ / ¢, — 1| fitted with
x=0.40for &5, x=0.15for &, and x=1.70for £,,. b, Log-log plot of characteristic times t* versus 1/|¢ /¢, — 1| with x=1.3 for 5 , x=1.1for ¢ and x=1.0for
t.c, Semilog plot of dynamical correlation lengths versus 1/|¢ / ¢, — 1| fitted with £=0.10 for &g, E=0.03 for £,, and £=0.42 for £,,. d, Semilog plot of all ¢*
values versus 1/|¢/ ¢o — 1| fitted with £=0.27. See the text for fit expressions. The error bars in a and ¢ represent the standard error of the measurement. The error bars
in b and d represent the uncertainty in determining the time at which the function is maximum.

times. Therefore, the dynamics not only slow down but also become
more heterogeneous on approach to point J. As the SHD functions
have approximately the same shape when viewed on a log-log plot
(see data collapse in insets of Fig.3a,b), this behaviour is fully
characterized by the ¢-dependence of the characteristic or peak
timescales {f; , #; and #; } and length scales {&; (1), &., (¢ ) and
& (t;,)}. The length &, (#] ) o< L, is a correlation length for string-
like motion, &, (¢35 ) o S, is a correlation length of mobile particle
clusters and &, = (x5°(¢*) /m)"/? is a correlation length® of clusters
of caged particles. On approach to point ], both the characteristic
times and the correlation lengths seem from Fig. 3 to grow without
bound. This is reminiscent of behaviour for supercooled liquids
as the temperature is lowered. Though very different, both types
of systems seem to approach an unusual critical point where the
growing lengthscale is purely dynamical, such that there is no
macroscopic change in instantaneous structure*°.

To further quantify this analogy, the growth of the characteristic
timescales and dynamical length scales is shown in Fig. 4a—d as
a function of packing density. Motivated by recent studies®*
predicting a power-law divergence of dynamical length scales from
mode-coupling theory’ (MCT), as well as earlier applications of
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MCT to liquids and colloids, we fit all data to a power law of the
form 1/|¢/p.—1|*, where both ¢ and x are adjustable parameters.
As seen in Fig. 4a,b, excellent fits are obtained to all data for a single
value ¢. =0.79£0.02. This value of ¢ lies well above the onset of
caging and is less than the jamming packing fraction, in analogy
with well-established findings that the mode-coupling temperature
is below the caging transition but above the glass-transition
temperature’, and demonstrates for the first time a mode-coupling-
like transition in a granular system. In addition to MCT, the glass
transition can also be well described by the Vogel-Tammann—
Fulcher (VTF) equation®; therefore, we also fit the characteristic
time and length scales to the form exp(E/|¢ /¢, — 1|), where E and
¢, are adjustable parameters. As seen in Fig. 4c,d, excellent fits are
obtained to all data for a single value ¢, = 0.84 £ 0.02, consistent
with the value of random close-packing for the bead system and the
value of point J. As random close-packing is the densest random
packing possible and the point at which all motion ceases, a
VTF packing fraction of ¢pcp is analogous to an effectively zero-
temperature ideal glass transition, consistent with the definition of
point J. This is the first prediction of point J in a granular system
from analysis of spatially heterogeneous dynamics.
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Our study implies that the behaviour of jammed systems,
both thermal and athermal alike, may be understood using the
theoretical tools developed for liquids. This, in turn, highlights
the importance of packing in the underlying physics of the glass
transition and jamming. Our results open the door to future
theoretical insight into the relationship between granular materials
and supercooled liquids, which might be united by a unified theory
of jamming.
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