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There is an intimate connection between the acquisition of
information and how this information changes the remaining
uncertainty in the system. This trade-off between information
and uncertainty plays a central role in the context of detection.
Recent advances in the ability to make accurate, on-chip
measurements of individual-electron current through a
quantum dot'® (QD) have been enabled by exploiting the
sensitivity of a second current, passing through a nearby
quantum point contact (QPC), to the fluctuating charge on
the QD*®. An important characteristic of QPC detectors is
their minimal influence on the systems they probe. Here we
show that even the operation of an effectively non-invasive
QPC detector can statistically alter the system’s behaviour. By
observing a particular QPC current, the statistical distribution
of the QD conditional current undergoes a substantial change
in comparison to that expected for unconditional shot noise’.
These results are in almost perfect agreement with a theoretical
model we develop to predict the joint current probability
distribution and conditional transport statistics of interacting
nanoscale systems.

Noise is generally due to randomness, which can be classical
or quantum in nature. Telegraph noise, where there is random
switching between two stable states'’, originates from such diverse
phenomena as thermal activation of an unstable impurity'"?,
non-equilibrium activation of a bistable system'*", switching of
magnetic domain orientation'®, or a reversible chemical reaction
in a biological ion channel®.

In nanoscale conductors, where charge motion is quantum
coherent over distances comparable to the system size, shot noise
and telegraph noise have recently been shown to be two sides of
the same coin®?%. A quantum dot (QD) is sufficiently small
that it is effectively zero dimensional, and behaves as an artificial
atom, holding a small number of electrons. Figure 1a shows the
sample used in the experiment reported here. The QD is marked
by the dotted circle®. An extra electron can tunnel into the
QD from the source lead (S), stay in the QD for a random
amount of time and then tunnel out into the drain lead (D)
if the applied voltage bias exceeds the temperature. This single-
electron transport produces a fluctuating electrical current. In
order to detect the statistical properties of this current, a sensitive
electrometer with a bandwidth much higher than the tunnelling
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rates is required. The electrometer is a nearby quantum point
contact (QPC) that is capacitively coupled to the QD via the
Coulomb interaction. The voltage-biased QPC detector transports
many electrons through a narrow constriction in the surrounding
two-dimensional electron gas (represented with an arrow). The
resistance of the QPC is susceptible to changes in the surrounding
electrostatic environment, and can therefore be used to sense the
presence (or absence) of an extra electron on the QD*. When
the extra electron tunnels into or out of the QD, the current I
flowing through the QPC switches between two different values (see
Fig. 1c). Therefore, the shot noise of the QD current J (randomness
in the number of switches in a given time interval) is intimately
linked with telegraph noise in the QPC current I (randomness of
duration time in each current value).

In the following, we develop a theoretical model for this
experiment. Ideal switching of the measured detector signal
between two noiseless values I, , is identified with the two current
levels experienced by the QPC. When an electron enters the QD
the current switches from I, to I,, and when the electron leaves
the QD the reverse switch happens. The number of ‘down’ or
‘up’ switches M in a given time trace of duration t is identified
with the number of different transport electrons that occupy
the QD in that time interval, naturally defining a QD current
variable J = M/t (we set e =1 to count in single-electron
charge units). The analogous number of electrons N passed by
the QPC in this same time interval defines the QPC current
variable I = N/t. The assumption of noiseless current levels
implies that I, < I(t) <I,, and the unidirectional nature of the
QD transport implies that 0 < J(#) < oo (see the Supplementary
Information for justification). Stochastic, statistically independent
quantum tunnelling into and out of the QD is described with
rates I, (ref. 22). For later convenience, we define the average
and difference variables I, = (I, + I,)/2, [, = (I1+13)/2 and
Al=(,—1)/2, AT' = (I, — I') /2. This model is capable of
describing a host of phenomena in many fields of science.

Taken alone, each side of the random process may be
characterized mathematically with the probability distributions
P(I,t) and P(J,t) of finding a given number of electrons
transmitted in a given time, or equivalently all current cumulants
{I") and {J™) (see the Supplementary Information for a
discussion of these statistical quantities). This catalogue of
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Figure 1 Nanodevice and current fluctuations. a, Quantum dot—quantum point contact structure fabricated using scanning probe lithography?* on a GaAs /Al 5Ga, 7AS
heterostructure containing a two-dimensional electron gas 34 nm below the surface. Ballistic electron flow through the QPC is indicated with an arrow, and the quantum dot
is indicated with a dotted circle. Individual-electron current is induced by applying a voltage bias between source (S) and drain (D). b, Probability distribution of charge
transmitted through the QPC, plotted on a logarithmic scale. Data set A is represented by blue asterisks and data set B is represented by open red squares. The solid lines are
the theoretical prediction of a universal ellipse for both configurations, with no fitting parameter. Slight deviations from the ellipse at the ends of the interval are due to
small-amplitude noise fluctuations in the individual current levels?. ¢, The flow of single-electron current is deduced by the presence of switching in the QPC current, which

acts as an on-chip electrometer.

cumulants gives a unique signature of the particular electronic
conductor, and is also known as full counting statistics®. For
example, the first two cumulants are the average current (I) and the
shot noise power (I*) = [dt(dI(¢)81(0)), where 81 =I(t) — (I).
For the QPC and QD, the average currents (I) and (J) and shot
noise powers {I?)) and (J*)) are given respectively by

(h=0L+L1) /@), (P)=AD/17,

(N=011/@L), (FPY=NUT7+I7)/@1). (1)

In the limit of small switching rates I'; , — 0 the current and noise
of the QD vanish, whereas the noise of the QPC actually diverges.
However, a simple specification of the counting statistics of
each conductor individually misses the important fact that the
two conductors are strongly correlated by the Coulomb interaction
between them. The simplest measure of the correlation between the
systems is the cross-correlation (I])) = f dt(8I(t)6J(0)), given by
(IJ) = (AIAT)I\ T,/ T2, )
This correlator is approximately constant under scaling of the
switching rates, compromising between the behaviour of the two
noises individually (1). Result (2) implies that the two currents may
be either positively or negatively correlated, depending on the sign
of AI'AI This effect has a simple physical interpretation: taking
AI > 0, if I, > I, then the system typically spends more time
in state 1 than in state 2. The current ] is increased by adding
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another ‘up’ and ‘down’ switch to the current trace. This new event
typically divides a long time interval spent in I, into two segments,
subtracting a short interval from I, and adding it to I,, thereby
increasing the current I. The same argument applied with I, < I’}
leads to a decrease in I given an increase in J, explaining the sign of
the cross-correlation function.

In order to specify the statistical correlation between the
conductors, we introduce the joint counting statistics of both
conductors. More specifically, the correlations may be quantified by
the joint probability distribution P(I, ], t) of finding current I and
current J in a time ¢ (equivalently, all cross-cumulants {I"]"})),
or may also be specified by the conditional distribution functions
P(I|]) or P(J|I), the probability of observing one current given
an observation of the other. These distributions are all related
to one another by P(I,]) = P(I|J)P(J) = P(J|I)P(I), where the
last equality is an expression of Bayes’s theorem. The conditional
distributions (and their associated conditional cumulants) play a
key role in the informational approach to detection®.

From the model described above, the complete characterization
of the system/detector fluctuation statistics may be obtained from
conditional master equation formalism. The statistical cumulants
of the current fluctuations are given with the help of a generating
function H(A, x), such that the cross-cumulants are given
simply by taking derivatives, {I"]") = 979} H(0,0). From the
mathematical derivation given in the Supplementary Information,
we find that the joint generating function is given by

HQ x)=2Ay— Lo+ AAI— AT + T expy,  (3)
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Figure 2 Joint probability distributions. The logarithm of the joint probability distribution of detecting QPC current (x axis) and QD current (y axis) is given as a
colour-density plot, where red indicates high probability and blue indicates low probability. a,c, Experimental constructions for data sets A and B respectively. The
experimental probability distributions were generated by splitting the data into a large number of subtraces, each containing on average seven tunnelling events.
b,d, Theoretical predictions for configurations A and B respectively; see the Supplementary Information for an explicit formula.

generalizing previous results?”?*. Results (1) and (2) follow
from (3). The function H (0, x) generates the current cumulants
of the QD¥ (the first few of which have been experimentally
verified”?), and H (2, 0) generates the current cumulants of the
QPC?. The full QPC current distribution was predicted to have
an elliptical shape®: logP(I)/t = — (G, — G,)*/(2AI), where
Gi,=+/1',|/I — L |. This prediction is experimentally confirmed
in Fig. 1b for data sets A (blue asterisks) and B (red squares) with no
fitting (see the Methods section). The joint generating function (3)
is directly related to the joint probability distribution of measuring
current I and current J (see Supplementary Information, equation
(6)). The logarithm of this distribution has been measured and
given in Fig. 2a,c for configurations A and B respectively. The
theoretical prediction for this quantity is given in Fig. 2b,d with
striking agreement.

Having described the joint statistical properties of both
currents, we now return to the detection question. It is
important to distinguish between physical back-action and
statistical-informational back-action. The non-invasive QPC
detector changes its physical current state depending on whether
or not the QD is occupied by an extra electron, whereas the
physical dynamics of the QD is unaffected by the state of the
QPC. However, by observing a particular outcome of the detector
variable (I), this leads to conditional (Bayesian) back-action
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of the detector on the system variable (J). This informational
back-action, or constrained randomness, manifests itself in a
variety of novel effects. We introduce the concept of conditional
counting statistics: the statistical current fluctuations of one system,
given the observation of a given current in the other. These statistics
may be calculated from the joint generating function (3) (see the
Supplementary Information), yielding a mixed generator H, (I, x)
of the (normalized) conditional statistics of the QD, given the
observation of a current I,

H=02(@"-1), 0

_JTT,
= VIS @D, @

Taking derivatives, all conditional cumulants are given by
{J )= £2/2", yielding a set of universal semicircles as a function
of the current I. At the endpoints of the interval, the QPC current
is observed to remain in I; or I,, and therefore there cannot be any
QD current, or any associated noise. The conditional QD current
cumulants all have a maximum at I,. The conditional current
maximum +/I71,/2 is always larger than the unconditional
current (J). Figure 3a,b compares the experimental values of the
first two conditional cumulants to the theoretical semicircles, with
excellent agreement. The distribution described by the generating
function (4) is a poissonian distribution with a generalized rate
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Figure 3 Conditional current cumulants. a, Conditional QD current (J ), plotted as a function of /. b, Conditional QD noise { J?). plotted as a function of /. The solid lines in
a and b are the theory from equation (4), describing universal semicircles. Filled blue circles and open red squares denote data sets A and B respectively. ¢, Conditional QPC
current (/). plotted as a function of J. d, Conditional QPC noise { /2) plotted as a function of J. The solid lines in ¢ and d are the theory, given by equation (5). In d the
horizontal dashed lines indicate the unconditional noise level, illustrating the effect of ‘conditional noise enhancement’ for data set B described in the text. The experimental
statistics were generated by splitting the data into a large number of subtraces, each containing on average four tunnelling events. The error bars show the standard error,
evaluated by dividing all the data into 10 subsets and calculating the moments for each subset individually.

{2, and effective charge e* = ¢/2, showing a radical change when
compared with the unconditional distribution?.

Turning our perspective around, we can pose similar questions
about the conditional detector statistics, given an observation of the
system current J. Although the generating function H,(4,]) for
these statistics may be found analytically (see the Supplementary
Information), we focus on the conditional current (I)., and the
conditional noise {I*)., given by

AIAT
J+S

W (ADY
’ TS+

where S = /J?*+ (AI')?. These conditional cumulants are
experimentally calculated and compared with equation (5) in
Fig. 3¢,d. As a function of the QD current J, the conditional current
tends to either I, or I, as ] — 0, depending on the sign of AT
This corresponds to the most likely detector current configuration
in the event of no switches being observed: the QPC current stays
at one value, also implying that the system becomes noiseless in
this limit. This is easily seen in (5) because {I?). is proportional to
J. The exception to this rule is the perfectly symmetric situation
I't =TI, where the QPC conditional average current is I,. This
situation corresponds to rare symmetric switching between the
states, whose effective rate is the conditional QD current J. The
corresponding QPC conditional noise actually diverges in this

(e=1, (5)
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limit, because the effective switching rate is vanishing. This effect,
where the noise in one system (monitored by another) can be
dramatically larger than the unmonitored noise, we refer to as
conditional noise enhancement. The same effect persists in the
asymmetric situation, and the maximum of the conditional noise
occurs at J> = (AT)*(4/5—1) /2. For the conditional noise peak
to exceed the unconditional noise, the ratio R = |AL'|[\ 1,/ I}
must be less than [(v/5—1)/2]%*~ 0.3. For data sets A and B,
R, ~0.38 and Rz~ 0.19, so only data set B shows conditional noise
enhancement. In the opposite limit, ] — 0o, the conditional current
tends to I, and the noise tends to zero. This situation corresponds
to rapid symmetric switching between the current states, whose
effective rate is again controlled by J. In both limits, the typical
dynamics of the telegraph process is completely taken over by the
transport condition.

METHODS

We now discuss the experimental procedure. From a measurement such as
shown in Fig. 1c, we can directly determine the rates I} , for electrons
tunnelling into and out of the QD®*’, The tunnelling rates are controlled by
tuning the voltages applied to gates G1 and G2. The data presented here were
taken at two different gate voltage configurations. Configuration A is
characterized by I'y = 160 Hz, I, = 586 Hz, and configuration B is
characterized by I'y =512 Hz, I, = 345 Hz. For each configuration, we
collected traces of length T = 700, containing around 10° tunnelling events.
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SAMPLE FABRICATION

Figure 1a shows the sample used in the experiments reported here. The
structure was fabricated using scanning probe lithography on a

GaAs/Alj 3Gay ;As heterostructure containing a two-dimensional electron gas
34 nm below the surface.

SAMPLE CHARACTERISTICS

The measurements were carried out in a *He/*He dilution refrigerator with an
electron temperature of about 190 mK, as determined from the width of
thermally broadened Coulomb blockade resonances. The charging energy of
the QD is 2.1 meV and the mean level spacing is 200-300 peV.

EXPERIMENTAL METHOD

The conductance of the QPC, Gqpc, was tuned close to 0.5 x 22 /h. We apply a
d.c. bias voltage between the source and the drain of the QPC, Vigpc =250 uV,
and measure the current through the QPC, Igpc, which depends on the number
of electrons N in the QD. The current signal was digitized with a sampling
frequency of 100 kHz, thereafter software filtered at 4 kHz using an eighth-order
Butterworth filter. To avoid tunnelling due to thermal fluctuations, the QD was
voltage biased with a bias much larger than the temperature.
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