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Ageing memory and glassiness of a driven
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Many systems in nature—glasses1–11, interfaces12 and fractures13

being some examples—cannot equilibrate with their
environment, which gives rise to novel and surprising behaviour
such as memory effects, ageing and nonlinear dynamics.
Unlike their equilibrated counterparts, the dynamics of out-of-
equilibrium systems is generally too complex to be captured
by simple macroscopic laws1. Here we investigate a system
that straddles the boundary between glass and crystal: a Bragg
glass14,15, formed by vortices in a superconductor. We find that
the response to an applied force evolves according to a stretched
exponential, with the exponent reflecting the deviation from
equilibrium. After the force is removed, the system ages with
time and its subsequent response time scales linearly with its
‘age’ (simple ageing), meaning that older systems are slower than
younger ones. We show that simple ageing can occur naturally
in the presence of sufficient quenched disorder. Moreover, the
hierarchical distribution of timescales, arising when chunks
of loose vortices cannot move before trapped ones become
dislodged, leads to a stretched-exponential response.

Glassy states of matter abound with seeming contradictions:
macroscopically they are rigid like crystals, but microscopically
their structure is closer to that of liquids. At the same time, their
response to external drives is unlike that of either crystals or
liquids, showing metastability, hysteresis and nonlinear dynamics1.
In recent years the glass family has expanded to include systems
that can be modelled by elastic manifolds in random potentials,
such as vortices in superconductors14–21, domain walls12 or two-
dimensional electron layers5,6. When the random potential is weak
these systems are expected to form a marginal glassy state, a ‘Bragg
glass’, which is topologically ordered like a perfect crystal, but
unlike crystals has no long-range spatial order14,15. An intriguing
and enduring puzzle associated with this phase is the dynamics
at the onset of motion: does it move as a rigid object or break
up into pieces; does it crystallize at high velocities or retain its
glassy nature22–25?

To probe the dynamics, we focused on vortex states in single
crystals of 2H-NbSe2 because in this material quenched disorder
can be sufficiently weak to allow the formation of a Bragg glass.
The vortex states were prepared by field cooling the sample
below the superconducting transition in a field of 0.2 T and
temperatures down to 4.2 K (see the Supplementary Information).
The results reported here were obtained on a sample of size
4.4 × 0.8 × 0.006 mm3 and transition temperature 7.2 K (see the
Supplementary Information). At low temperatures (T < 5.7 K),

where the Bragg glass is expected, the response of a freshly
prepared field-cooled lattice to a current pulse was previously19

found to fit stretched-exponential, or Kohlrausch–Williams–Watts
(KWW) time dependence10,11, spanning three decades in time:
V (t) = V1{1 − exp(−[(t − t0)/τ]β)}. Here V1 is the saturation
voltage, t0 the delay time before a measurable voltage appears, τ
the rise time and β ∼ 0.6. The experimental protocol consists of
applying a first current pulse of amplitude I1 followed by a second
pulse I2, during which the evolution of the voltage is recorded
(Fig. 1b, inset). The pulses are separated by a waiting time tw

without current. Remarkably, the response is significantly slower
during the second pulse than during the first pulse and its evolution
depends not only on the elapsed time from the onset of I2, as is the
case in ergodic systems, but also on tw, so V (t) = V (t , tw). This
behaviour, also known as ageing, is one of the hallmarks of glassy
dynamics1–8. The response curves for I2 = I1 and several values
of tw are presented in Fig. 1a. When the same data are re-plotted
against the scaled time t/tw (Fig. 1b), all the curves collapse without
adjustable parameters onto a master curve,

V (t) = V1

{
1−exp

(
−

[
t

γ tw

]β
)}

. (1)

The scaling constant, γ , is independent of tw, leading to a special
and rare form of ageing, V (t , tw) = V (t/tw), also known as
simple or full ageing6–8. Simple ageing is remarkably robust in this
system, extending over almost five decades in reduced time and
holding to the longest measurement times ∼ 2tw. For T < 5.5 K
and at low saturation voltages, V < 5 μV, the exponent β is
independent of tw and temperature. Its value, β ∼ 0.24, obtained
for V1 = 1.0 μV, decreases slightly with increasing V1 (Fig. 1c).
Simple ageing continues to hold at higher drives, but the range of
the KWW fit is reduced. We find that the KWW function fits the
data over a wider range than other simple choices. For example,
a logarithmic fit, also commonly used6, is indistinguishable from
KWW for t < 0.1tw, but becomes worse at longer times. We note
that for the second pulse β ≤ 0.24 is significantly lower than in the
first-pulse case, where β ∼ 0.6. As shown below, this provides an
important clue to the glassy dynamics of moving vortex states.

To study the case I1 �= I2,I1 was varied while keeping I2 constant.
The response is a sensitive function of I1: it is slowest for I1 = I2

and becomes faster whenever the two levels are not equal (Fig. 2a).
In other words, the system retains an imprint of I1, which can
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Figure 1 Ageing of the vortex lattice. a, Response during the second pulse following a first pulse of duration t1 = 512 s and amplitude I1 = I2 = 5.36 mA. The waiting
times tw = 4 s, 8 s, 16 s, 32 s, 64 s, 128 s, 256 s, 512 s, 1,024 s and 2,048 s increase along the arrow. b, Scaled second-pulse response versus scaled time. A linear fit gives
β (slope) and γ from the intercept, −log(1− V/V1 ) = 1. The experimental set-up is shown in the inset. c, Temperature dependence of β for first pulse and second pulse
(open and solid symbols). Pulse amplitudes were adjusted to give the same saturation voltage at all temperatures.

be retrieved later in the form of a maximal slow-down during I2.
For t > 0.1 s, the response during I2 fits a generalized form of
equation (1):

V (t) = V2

{
1− f exp

(
−

[
t

γ tw

]β
)}

. (2)

Here V2 is the second-pulse saturation voltage and f = f (V1/V2) is
a ‘memory function’. As shown in Fig. 2b, for each V2 there exists a
unique value f that collapses the response for all V1 onto one curve.
We plot the memory function obtained by this procedure in Fig. 2c.
Although the asymptotic response (t > 0.1 s) obeys equation (2),
this form is not valid at short times (Fig. 2d).

We studied another limit, tw =0, by applying ‘step pulses’ where
the first pulse I1 was directly switched after a time t1 to the second
pulse I2. If we do not allow the response to saturate during the first
pulse, the second-pulse response is identical to that of a single pulse
of amplitude I2 with a shifted time origin: V [t − (t1 −δt)]. The
shift δt is linear in t1 (Fig. 3a, inset), a behaviour that provides an
additional clue to the mechanism underlying the glassy dynamics
in this system.

KWW relaxation is far more common than the ‘conventional’
exponential form (β = 1). It occurs in complex systems where
the dynamics is governed by a statistical distribution of relaxation
times together with constraints that restrict the path towards
steady state to a hierarchical sequence of steps9–11. The hierarchy
arises if certain segments (here chunks of vortices) cannot start
moving until the ones in front of them are dislodged. A model
of hierarchically constrained dynamics that leads to a KWW

response with β = 1/(1 + μ0 log 2), where μ0 is the number of
degrees of freedom involved in initiating the process of relaxation,
has been proposed9. Thus different values of β imply qualitative
differences in the initial conditions, with smaller β corresponding
to more entangled states, which require more steps to reach
steady state. The exponents, β ∼ 0.6 and β ∼ 0.2, imply that
the corresponding initial states for the first pulse and second
pulse are inherently different. For the former, μ0 ∼ 1 implies that
the initial field-cooled state is readily set in motion, whereas for
the latter, μ0 ∼ 10 indicates that the moving state (the second
pulse is applied after the system experienced motion) is more
entangled. This striking difference, together with the fact that the
initial value, β ∼ 0.6, cannot be recovered without warming up
the sample, suggests that the structure of the field-cooled state is
altered irreversibly after the onset of motion. We propose that this
is due to the introduction of dislocations when, owing to pinning-
potential inhomogeneities, some chunks of vortices start moving
before others. As was shown in numerical simulations of driven
two-dimensional interacting systems26, the dislocations minimize
their energy by forming grain boundaries and by aligning their
Burgers vectors along the direction of motion. When the drive is
suddenly removed they drift to restore the original state. However,
if annealing timescales are much longer than experimental times,
the grain boundaries coarsen, forming a more entangled network
of dislocations, resulting in a lower value of β.

It is generally accepted that the energy landscape of a finite
disordered system has many local minima corresponding to
metastable configurations surrounded by high energy barriers that
can trap the system8. The trapping time in a metastable state
increases with trap depth. In this context we can model the
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Figure 2 Memory of pulse amplitude. a, Time evolution of the second pulse for V2 = 1.3μV. b, Same data as in a, showing that there exists a value, f(V1/V2 ), for which
the scaled data, −log[(1− V/V2 )/ f ], collapse onto a master curve. c, The memory function, f (V1/V2 ), obtained as described in b. The highlighted area encloses data taken
in the Bragg-glass regime, where memory is strongest. For T > 5.7 K f flattens out, signalling a more feeble memory. d, Response in the first 0.3 ms of the second pulse, for
tw = 240 s, I2 = 9.1 mA, showing strong first-pulse memory.

0

0
0

0.02

0.04

0.06

0.05 0.10 0.15 0.20

0

10

20

30

0.2 0.4

t1 (ms)

δt
 (m

s)

t1 = 0.10 ms

δt  = 0.03 ms

t (ms)

V 
(μ

V)

Figure 3 Step-pulse response. Response to step pulse (I1 = 8.12 mA,
I2 = 9.13 mA, tw = 0). The second-pulse response (triangles) is compared with the
response to a single pulse with the same current level I2 (circles). The two curves
overlap when shifting the time axis by t1 −δt. The inset shows that δt is linear in t1.

dynamics of the vortex system by mapping each state onto a point
in configuration space and representing the evolution between two
states by a connecting trajectory consisting of a sequence of trapped
states. Thus, during the first pulse the system evolves from the
field-cooled state to the moving vortex state along a connecting
trajectory as shown in Fig. 4. During tw when the drive is absent,
the system drifts away from the moving-state point towards a

lower-energy relaxed state, where the grain boundaries have
coarsened. Both simple ageing and the response to a step pulse can
be described within this model.

The key point for simple ageing is that the deepest traps
encountered during tw must have trapping times τt ∼ tw. This was
shown to be the case8 for trapping times that have exponential or
power-law distributions, provided the maximum trapping time is
much shorter than tw. Therefore, during the subsequent second
pulse, while the system is driven back towards the moving state
and traversing the same deepest trap, the trapping time should
again be ∼ tw, provided the drive does not significantly change
the energy landscape. In other words, tw selects a timescale (out
of a broad distribution) that becomes the characteristic scale for
subsequent response events. This naturally gives rise to simple
ageing. However, in spite of its ‘simplicity’, simple ageing is rare
and was only recently observed in a Coulomb glass5,6 and in a
spin glass7. It is noteworthy that ageing may disappear altogether
if the distribution of τt is not continuous or if it is truncated. For
example, in very disordered samples where τt � tw, the system
remains trapped close to the moving state long after the drive is
removed. This is the case for vortex states in Fe-doped 2H-NbSe2,
where no ageing was observed for tw ≤ 24 h (ref. 17). At the other
extreme lies the case of clean samples, where ageing is not seen
either because there is a unique equilibrium state (no trapping)
or because τt is much shorter than the measurement times. This
implies that there is a critical amount of disorder needed to observe
ageing (see the Supplementary Information).
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Figure 4 Trajectories in configuration space. Configuration-space representation
of vortex states and connecting trajectories. During the first pulse the system
evolves along the FC–MS (field-cooled–moving-state) trajectory, which is
independent of driving force. In between pulses the system drifts towards the
relaxed state (RS). During the second pulse, it is driven back to the moving state.

The response to step pulses imposes two additional constraints.
(1) For a given first-pulse amplitude I , the configuration space
‘speed’, v(I), along the FC–MS trajectory is constant. (2) v(I)
increases with increasing I . Thus during the first pulse the system
evolves at an average speed v1 = v(I1) such that at time t1 it
reaches an intermediate point P along FC–MS. During the second
pulse the remainder of the trajectory is traversed at a higher speed
v2 = v(I2). Had the entire FC–MS trajectory been traversed at speed
v2, then P would have been reached at a time δt = t1(v1/v2) after
the pulse onset. Therefore, the response during the second pulse,
V ′(t − (t1 −δt)), is identical to that for a single pulse of amplitude
I2 applied δt before t1.

The experiments described here demonstrate that in the
presence of quenched disorder the response of a driven vortex
system to a current pulse can be described by KWW time
dependence, with the exponent reflecting the deviation of the initial
state from equilibrium. It is shown that there exists a range of
strengths of the quenched disorder for which the system can show
ageing and that simple ageing arises naturally in samples with a
continuous distribution of trapping times whose range is much
wider than that of experimental waiting times.

Received 31 July 2006; accepted 24 November 2006; published 21 January 2007.

References
1. Cugliandolo, L. F. in Dynamics of Glassy Systems, Lecture Notes in Slow Relaxation and Non

Equilibrium Dynamics in Condensed Matter, Les Houches Session 77 July 2002 (eds Barrat, J.-L.,
Dalibard, J., Kurchan, J. & Feigel’man, M. V.) Preprint at <http://arxiv.org/abs/cond-mat/0210312>.

2. Struik, L. C. E. Physical Aging in Amorphous Polymers and Other Materials (Elsevier,
Amsterdam, 1978).

3. Lundgren, L., Svedlindh, P., Nordblad, P. & Beckman, O. Dynamics of the relaxation-time spectrum
in a CuMn spin-glass. Phys. Rev. Lett. 51, 911–914 (1983).

4. Lederman, M., Orbach, R., Hammann, J. M., Ocio, M. & Vincent, E. Dynamics in spin glasses. Phys.
Rev. B 44, 7403–7412 (1991).

5. Vaknin, A. & Ovadyahu, Z. Aging effects in an Anderson insulator. Phys. Rev. Lett. 84,
3402–3405 (2000).

6. Orlyanchik, V. & Ovadyahu, Z. Stress aging in the electron glass. Phys. Rev. Lett. 92, 066801 (2004).
7. Rodriguez, G. F., Kenning, G. G. & Orbach, R. Full aging in spin glasses. Phys. Rev. Lett. 91,

037203 (2003).
8. Bouchaud, J. P. Weak ergodicity breaking and aging in disordered systems. J. Phys. (Paris) I 2,

1705–1713 (1992).
9. Palmer, R. G., Stein, D. L., Abrahams, E. & Anderson, P. W. Models of hierarchically constrained

dynamics for glassy relaxation. Phys. Rev. Lett. 53, 958–961 (1984).
10. Kohlrausch, R. Theorie des elektrischen rückstandes in der leidener flasche. Ann. Phys. Chem.

(Leipzig) 91, 179–214 (1874).
11. Williams, G. & Watts, D. C. Non-symmetrical dielectric relaxation behavior arising from a simple

empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970).
12. Repain, V. et al. Creep motion of a magnetic wall: Avalanche size divergence. Europhys. Lett. 68,

460–466 (2004).
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