Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quasiparticle dynamics in graphene

Abstract

The effectively massless, relativistic behaviour of graphene’s charge carriers—known as Dirac fermions—is a result of its unique electronic structure, characterized by conical valence and conduction bands that meet at a single point in momentum space (at the Dirac crossing energy). The study of many-body interactions amongst the charge carriers in graphene and related systems such as carbon nanotubes, fullerenes and graphite is of interest owing to their contribution to superconductivity and other exotic ground states in these systems. Here we show, using angle-resolved photoemission spectroscopy, that electron–plasmon coupling plays an unusually strong role in renormalizing the bands around the Dirac crossing energy—analogous to mass renormalization by electron–boson coupling in ordinary metals. Our results show that electron–electron, electron–plasmon and electron–phonon coupling must be considered on an equal footing in attempts to understand the dynamics of quasiparticles in graphene and related systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The band structure of graphene.
Figure 2: The band structure of graphene near the Fermi level.
Figure 3: MDC widths of carriers in graphene.
Figure 4: Decay processes in graphene.
Figure 5: Energy diagram of electronic excitations in graphene.

Similar content being viewed by others

References

  1. Tang, Z. K. et al. Superconductivity in 4 Angstrom single-walled carbon nanotubes. Science 292, 2462–2465 (2001).

    Article  ADS  Google Scholar 

  2. Kociak, M. et al. Superconductivity in ropes of single-walled carbon nanotubes. Phys. Rev. Lett. 86, 2416–2419 (2001).

    Article  ADS  Google Scholar 

  3. Hebard, A. F. et al. Superconductivity at 18 K in potassium-doped C60. Nature 350, 600–601 (1991).

    Article  ADS  Google Scholar 

  4. Hannay, N. B. et al. Superconductivity in graphitic compounds. Phys. Rev. Lett. 14, 225–226 (1965).

    Article  ADS  Google Scholar 

  5. Weller, T. E., Ellerby, M., Saxena, S. S., Smith, R. P. & Skipper, N. T. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nature Phys. 1, 39–41 (2005).

    Article  ADS  Google Scholar 

  6. Emery, N. et al. Superconductivity of bulk CaC6 . Phys. Rev. Lett. 95, 087003 (2005).

    Article  ADS  Google Scholar 

  7. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 192–200 (2005).

    Article  ADS  Google Scholar 

  8. Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  9. Forbeaux, I., Themlin, J. M. & Debever, J. M. Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 58, 16396–16406 (1998).

    Article  ADS  Google Scholar 

  10. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  ADS  Google Scholar 

  11. DiVincenzo, D. P. & Mele, E. J. Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29, 1685–1694 (1984).

    Article  ADS  Google Scholar 

  12. Xu, S. M. et al. Energy dependence of electron lifetime in graphite observed with femtosecond photoemission spectroscopy. Phys. Rev. Lett. 76, 483–486 (1996).

    Article  ADS  Google Scholar 

  13. Moos, G., Gahl, C., Fasel, F., Wolf, M. & Hertel, T. Anisotropy of quasiparticle lifetimes and the role of disorder in graphite from ultrafast time-resolved photoemission spectroscopy. Phys. Rev. Lett. 87, 267402 (2001).

    Article  ADS  Google Scholar 

  14. Fröhlich, H. Superconductivity in metals with incomplete inner shells. J. Phys. C Solid State Phys. 1, 544–548 (1968).

    Article  ADS  Google Scholar 

  15. Ruvalds, J. Plasmons and high-temperature superconductivity in alloys of copper oxides. Phys. Rev. B 35, 8869–8872 (1987).

    Article  ADS  Google Scholar 

  16. Uchoa, B. & Castro Neto, A. Superconductivity in metal coated graphene. Preprint at <http://arxiv.org/abs/cond-mat/060815> (2006).

  17. Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    Article  ADS  Google Scholar 

  18. Strocov, V. N. et al. Photoemission from graphite: Intrinsic and self-energy effects. Phys. Rev. B 64, 075105 (2001).

    Article  ADS  Google Scholar 

  19. Rollings, E. et al. Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids 67, 2172–2177 (2006).

    Article  ADS  Google Scholar 

  20. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  ADS  Google Scholar 

  21. Sugawara, K., Sato, T., Souma, S., Takahashi, T. & Suematsu, H. Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. B 73, 045124 (2006).

    Article  ADS  Google Scholar 

  22. Zhou, S. Y. et al. First direct observation of Dirac fermions in graphite. Nature Phys. 2, 595–599 (2006).

    Article  ADS  Google Scholar 

  23. Emtsev, K. et al. Initial stages of the graphite-SiC(0001) interface formation studied by photoelectron spectroscopy. Preprint at <http://arxiv.org/abs/cond-mat/0609383> (2006).

  24. Zhou, S. Y., Gweon, G. H. & Lanzara, A. Low energy excitations in graphite: the role of dimensionality and lattice defects. Ann. Phys. 321, 1730–1746 (2006).

    Article  ADS  Google Scholar 

  25. Shirley, E., Terminello, L., Santoni, A. & Himpsel, F. J. Brillouin-zone-selection effects in graphite photoelectron angular distributions. Phys. Rev. B 51, 13614–13622 (1995).

    Article  ADS  Google Scholar 

  26. Bennich, P. et al. Photoemission study of K on graphite. Phys. Rev. B 59, 8292–8304 (1999).

    Article  ADS  Google Scholar 

  27. Kaminski, A. & Fretwell, H. M. On the extraction of the self-energy from angle-resolved photoemission spectroscopy. New J. Phys. 7, 98 (2005).

    Article  ADS  Google Scholar 

  28. Kordyuk, A. A. et al. Bare electron dispersion from experiment: Self-consistent self-energy analysis of photoemission data. Phys. Rev. B 71, 214513 (2005).

    Article  ADS  Google Scholar 

  29. Valla, T., Fedorov, A. V., Johnson, P. D. & Hulbert, S. L. Many-body effects in angle-resolved photoemission: quasiparticle energy and lifetime of a Mo(110) suface state. Phys. Rev. Lett. 83, 2085–2088 (1999).

    Article  ADS  Google Scholar 

  30. Hengsberger, M., Purdie, D., Segovia, P., Garnier, M. & Baer, Y. Photoemission study of a strongly coupled electron-phonon system. Phys. Rev. Lett. 83, 592–595 (1999).

    Article  ADS  Google Scholar 

  31. Rotenberg, E., Schaefer, J. & Kevan, S. D. Coupling between adsorbate vibrations and an electronic surface state. Phys. Rev. Lett. 84, 2925–2928 (2000).

    Article  ADS  Google Scholar 

  32. Valla, T. et al. Evidence for quantum critical behavior in the optimally doped cuprate Bi2Sr2CaCu2O8+d . Science 285, 2110–2113 (1999).

    Article  Google Scholar 

  33. Lanzara, A. et al. Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. 412, 510–514 (2001).

  34. Vitali, L., Schneider, M. A., Kern, K., Wirtz, L. & Rubio, A. Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite. Phys. Rev. B 69, 121414 (2004).

    Article  ADS  Google Scholar 

  35. Grimvall, G. The Electron-Phonon Interaction in Metals (North Holland, Amsterdam, 1981).

    Google Scholar 

  36. Calandra, M. & Mauri, F. Theoretical explanation of superconductivity in C6Ca. Phys. Rev. Lett. 95, 237002 (2005).

    Article  ADS  Google Scholar 

  37. Castro Neto, A. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett. 86, 4382–4385 (2001).

    Article  ADS  Google Scholar 

  38. Jensen, E., Bartynski, R. A., Gustafsson, T. & Plummer, E. W. Distortion of an unoccupied band in Be by the electron-plasmon interaction. Phys. Rev. Lett. 52, 2172–2175 (1984).

    Article  ADS  Google Scholar 

  39. Hawrylak, P. Effective mass and lifetime of electrons in a layered electron gas. Phys. Rev. Lett. 59, 485–488 (1987).

    Article  ADS  Google Scholar 

  40. Luk’yanchuk, I. & Kopelevich, Y. Phase analysis of quantum oscillations in graphite. Phys. Rev. Lett. 93, 166402 (2004).

    Article  ADS  Google Scholar 

  41. Hamada, N., Sawada, S. & Oshiyama, A. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 68, 1579–1581 (1992).

    Article  ADS  Google Scholar 

  42. Ando, T., Nakanishi, T. & Saito, R. Berry’s phase and absence of back scattering in carbon nanotubes. J. Phys. Soc. Jpn 67, 2857–2862 (1998).

    Article  ADS  Google Scholar 

  43. Li, Z. Y., Hock, K. M., Palmer, R. E. & Annett, J. F. Potassium-adsorption-induced plasmon frequency shift in graphite. J. Phys. Condens. Matter 3, S103–S106 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work and the ALS were supported by the US Department of Energy, Office of Basic Sciences. K.H. and T.O. were supported by the Max Planck Society. We are grateful to J. L. McChesney for discussions and assistance with the experiments.

Author information

Authors and Affiliations

Authors

Contributions

T.S. and K.H. prepared the SiC substrates. T.O. optimized the graphene quality with help from A.B.; A.B. and T.O. contributed equally to the graphitization during data runs and ARPES measurements. A.B. carried out theoretical modelling. E.R. carried out numerical analysis of the data. E.R. and A.B. wrote the text with review and input from all other co-authors.

Corresponding author

Correspondence to Eli Rotenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bostwick, A., Ohta, T., Seyller, T. et al. Quasiparticle dynamics in graphene. Nature Phys 3, 36–40 (2007). https://doi.org/10.1038/nphys477

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys477

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing