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measure for measure

If presented with an equation where time 
and length are added, we immediately 
know that the equation cannot be 

correct — it is deeply encoded in a physicist’s 
DNA that it is only meaningful to add 
terms of the same dimension. However, we 
are allowed to multiply or divide different 
quantities and obtain new — derived — 
quantities in doing so. For instance, if length l 
is divided by time t we obtain a new quantity, 
l/t, velocity. Which quantities are considered 
fundamental and which are derived is a 
matter of convention and convenience rather 
than a law of nature1,2.

In physics classes it is taught to include 
units when evaluating formulas with values 
and to always check that the units work out 
right in equations. That way we easily detect 
if we forgot to square a term somewhere or  
the numbers we plugged into our equation 
were stated in different units and need a 
numerical correction. Although perhaps not 
appreciated as such by many (non-physicist) 
scientists, this is the simplest application of 
dimensional analysis.

A more advanced use is rewriting 
equations in terms of the characteristic 
quantities of the physical situation 
described, sometimes referred to as ‘non-
dimensionalizing’ equations. This is useful 
when assessing which terms in a differential 
equation are important. A simple example of 
this is the equation describing the free fall of a 
body: d2z/dt2 = g, where g is the gravitational 
acceleration felt near the Earth’s surface and 
z is the height of the body. There are two 
initial values: the body’s initial velocity v0 and 
its initial height z0. Defining dimensionless 
variables in terms of these parameters, 
z̃ = z/z0 and t̃ = t/(z0/v0), the differential 
equation reads d2z̃ /dt̃2 = (gz0)/(v0

2), where the 
right-hand side is dimensionless. Writing the 
equation this way we see that there is really 
only one parameter in the problem; doubling 
the initial velocity may be counterbalanced 
by increasing z0 by a factor of four to give the 
exact same trajectory in dimensionless units. 
In fact, this dimensionless number is an 
instance of the so-called Froude number used 
in fluid dynamics, Fr = v0/√

—–
gz0.

The most powerful use of dimensional 
analysis is for predicting how the outcome 
of an experiment depends on the variables 
and at the same time providing theoretical 
insight. The recipe for doing this is the 
following: make a list of all quantities on 
which the answer must depend, then write 
down the dimensions of these quantities, 
and finally demand that these quantities 
be combined into a functional form that 
provides the right dimension. This scheme 
was cast into a formal framework by 
Buckingham in 1921 and is often referred to 
as the Buckingham π-theorem3.

Dimensional arguments have been 
used by some of the greatest physicists. 
In his seminal paper on the model of the 
atom explaining the absorption spectra of 
hydrogen, Niels Bohr (pictured) based his 
derivation on a dimensional argument4: 
“By the introduction of this quantity 
[Planck’s constant] the question of the stable 
configuration of the electrons in the atoms 
is essentially changed, as this constant is 
of such dimensions and magnitude that it, 
together with the mass and charge of the 
particles, can determine a length of the order 
of magnitude required.” Bohr noted that 
electrodynamics alone could not predict the 

size of an atom. But introducing Planck’s 
constant provided the right size — the 
Bohr radius.

If we were to derive the Bohr radius 
from dimensional analysis today, we would 
argue that the relevant physical quantities 
are the elementary charge e and the vacuum 
permittivity ε0, because the atom involves 
interacting charges; the mass of the electron 
me, because it is the electron that is orbiting 
the much heavier nucleus; and finally 
Planck’s constant h, because we know that 
on the small scale of the atom energy is 
quantized. These quantities can be combined 
in a unique way to provide a length: 
a = C(ε0h2)/(e2me). Dimensional analysis 
provides the answer up to a dimensionless 
constant C, but setting C = 1 and plugging in 
the numbers we arrive at a = 1.7 Å.

Rayleigh was another enthusiastic 
advocate of dimensional analysis (which 
he called ‘the principle of similitude’) and 
provided many more examples of physical 
insight obtained through dimensional 
analysis5. But the concept is not limited 
to physics: there is a neat proof of the 
Pythagorean theorem due to Einstein that 
relies on dimensional reasoning6.

Dimensional analysis may come across 
as simply trying to fit pieces of a puzzle 
by trial and error. However, identifying 
the quantities that are relevant for a given 
problem is a demanding task that requires 
deep physical insight. So, ‘for dimensional 
reasons’ is a valid argument in physics, and 
dimensional analysis truly deserves a place in 
any physicist’s toolbox. ❐
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Insights through dimensions
Dimensional analysis is a powerful tool for assessing physical problems, reaffirms Tina Hecksher.
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