Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topological materials discovery using electron filling constraints

Abstract

Nodal semimetals are classes of topological materials that have nodal-point or nodal-line Fermi surfaces, which give them novel transport and topological properties. Despite being highly sought after, there are currently very few experimental realizations, and identifying new materials candidates has mainly relied on exhaustive database searches. Here we show how recent studies on the interplay between electron filling and nonsymmorphic space-group symmetries can guide the search for filling-enforced nodal semimetals. We recast the previously derived constraints on the allowed band-insulator fillings in any space group into a new form, which enables effective screening of materials candidates based solely on their space group, electron count in the formula unit, and multiplicity of the formula unit. This criterion greatly reduces the computation load for discovering topological materials in a database of previously synthesized compounds. As a demonstration, we focus on a few selected nonsymmorphic space groups which are predicted to host filling-enforced Dirac semimetals. Of the more than 30,000 entires listed, our filling criterion alone eliminates 96% of the entries before they are passed on for further analysis. We discover a handful of candidates from this guided search; among them, the monoclinic crystal Ca2Pt2Ga is particularly promising.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Filling criterion for (semi-)metals.
Figure 2: Guided search for filling-enforced semimetals using the electron filling criterion.
Figure 3: Filling-enforced Dirac semimetal candidate Ca2Pt2Ga.
Figure 4: Band structures for additional filling-enforced Dirac semimetal candidates.
Figure 5: Characterization of the filling-enforced Dirac-ring semimetal candidate CaPtGa.

Similar content being viewed by others

References

  1. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  2. Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    Article  ADS  Google Scholar 

  3. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  ADS  Google Scholar 

  4. Steinberg, J. A. et al. Bulk Dirac points in distorted spinels. Phys. Rev. Lett. 112, 036403 (2014).

    Article  ADS  Google Scholar 

  5. Chen, Y., Lu, Y.-M. & Kee, H.-Y. Topological crystalline metal in orthorhombic perovskite iridates. Nat. Commun. 6, 6593 (2015).

    Article  ADS  Google Scholar 

  6. Fang, C., Chen, Y., Kee, H.-Y. & Fu, L. Topological nodal line semimetals with and without spin-orbital coupling. Phys. Rev. B 92, 081201 (2015).

    Article  ADS  Google Scholar 

  7. Wieder, B. J., Kim, Y., Rappe, A. M. & Kane, C. L. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016).

    Article  ADS  Google Scholar 

  8. Fang, C., Lu, L., Liu, J. & Fu, L. Topological semimetals with helicoid surface states. Nat. Phys. 12, 936–941 (2016).

    Article  Google Scholar 

  9. Bzdušek, T., Wu, Q., Rüegg, A., Sigrist, M. & Soluyanov, A. A. Nodal-chain metals. Nature 538, 75–78 (2016).

    Article  ADS  Google Scholar 

  10. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  ADS  Google Scholar 

  11. Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    Article  MathSciNet  Google Scholar 

  12. Lim, L.-K. & Moessner, R. Pseudospin vortex ring with a nodal line in three dimensions. Phys. Rev. Lett. 118, 016401 (2017).

    Article  ADS  Google Scholar 

  13. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2 . Nat. Mater. 14, 280–284 (2015).

    Article  ADS  Google Scholar 

  14. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  ADS  Google Scholar 

  15. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  16. Moll, P. J. W. et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2 . Nature 535, 266–270 (2016).

    Article  ADS  Google Scholar 

  17. Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2017).

    Article  Google Scholar 

  18. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  ADS  Google Scholar 

  19. Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 . Nat. Commun. 5, 3786 (2014).

    Article  ADS  Google Scholar 

  20. Jeon, S. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2 . Nat. Mater. 13, 851–856 (2014).

    Article  ADS  Google Scholar 

  21. Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2 . Nat. Mater. 13, 677–681 (2014).

    Article  ADS  Google Scholar 

  22. Yang, B.-J. & Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2014).

    Article  ADS  Google Scholar 

  23. König, A. & Mermin, N. D. Electronic level degeneracy in nonsymmorphic periodic or aperiodic crystals. Phys. Rev. B 56, 13607–13610 (1997).

    Article  ADS  Google Scholar 

  24. Parameswaran, S. A., Turner, A. M., Arovas, D. P. & Vishwanath, A. Topological order and absence of band insulators at integer filling in non-symmorphic crystals. Nat. Phys. 9, 299–303 (2013).

    Article  Google Scholar 

  25. Chen, Y., Kim, H.-S. & Kee, H.-Y. Topological crystalline semimetals in nonsymmorphic lattices. Phys. Rev. B 93, 155140 (2016).

    Article  ADS  Google Scholar 

  26. Liang, Q-F., Zhou, J., Yu, R., Wang, Z. & Weng, H. Node-surface and node-line fermions from nonsymmorphic lattice symmetries. Phys. Rev. B 93, 085427 (2016).

    Article  ADS  Google Scholar 

  27. Parameswaran, S. A. Topological ‘Luttinger’ invariants protected by non-symmorphic symmetry in semimetals. Preprint at http://arXiv.org/abs/1508.01546 (2015).

  28. Gibson, Q. D. et al. Three-dimensional Dirac semimetals: design principles and predictions of new materials. Phys. Rev. B 91, 205128 (2015).

    Article  ADS  Google Scholar 

  29. Watanabe, H., Po, H. C., Vishwanath, A. & Zaletel, M. P. Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals. Proc. Natl Acad. Sci. USA 112, 14551–14556 (2015).

    Article  ADS  Google Scholar 

  30. Watanabe, H., Po, H. C., Zaletel, M. P. & Vishwanath, A. Filling-enforced gaplessness in band structures of the 230 space groups. Phys. Rev. Lett. 117, 096404 (2016).

    Article  ADS  Google Scholar 

  31. Hellenbrandt, M. The inorganic crystal structure database (ICSD)—present and future. Crystallogr. Rev. 10, 17–22 (2004).

    Article  Google Scholar 

  32. Zaheer, S. Three Dimension Dirac Semimetals PhD dissertation, Univ. Pennsylvania (2014); http://repository.upenn.edu/edissertations/1514

  33. Ponou, S. & Miller, G. J. Synergistic geometrical and electronic features in the intermetallic phases Ca2AgM2, Ca2MgM2, and Ca2GaM2 (M = Pd, Pt). Z. Anorg. Allg. Chem. 641, 1069–1079 (2015).

    Article  Google Scholar 

  34. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three dimensional solids. Preprint at http://arXiv.org/abs/1705.01111 (2017).

  35. Kargarian, M., Randeria, M. & Lu, Y.-M. Are the surface Fermi arcs in Dirac semimetals topologically protected? Proc. Natl Acad. Sci. USA 113, 8648–8652 (2016).

    Article  ADS  Google Scholar 

  36. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

    Article  ADS  Google Scholar 

  37. Hahn, T. (ed.) International Tables for Crystallography Vol. A: Space-group Symmetry 5th edn (Springer, 2006).

  38. Po, H. C., Watanabe, H., Zaletel, M. & Vishwanath, A. Filling-enforced quantum band insulators in spin-orbit coupled crystals. Sci. Adv. 2, e1501782 (2016).

    Article  ADS  Google Scholar 

  39. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  41. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  Google Scholar 

  42. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  ADS  Google Scholar 

  43. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  44. Feng, H. L., Sathish, C. I., Li, J., Wang, X. & Yamaura, K. Synthesis, structure, and magnetic properties of a new double perovskite Ca2InOsO6 . Phys. Procedia 45, 117–120 (2013).

    Article  ADS  Google Scholar 

  45. Watanabe, H., Po, H. C. & Vishwanath, A. Structure and topology of band structures in the 1651 magnetic space groups. Preprint at http://arXiv.org/abs/1707.01903 (2017).

  46. Bradley, C. J. & Cracknell, A. P. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Oxford Univ. Press, 1972).

    MATH  Google Scholar 

  47. Dascoulidou-Gritner, K. & Schuster, H.-U. Darstellung und Kristallstrukturen der Verbindungen CaPtGa, CaPtIn und CaPd0,4Ga1,6 . Z. Anorg. Allg. Chem. 620, 1151–1156 (1994).

    Article  Google Scholar 

  48. Topological insulators. in Contemporary Concepts of Condensed Matter Science Vol. 6 (eds Franz, M. & Molenkamp, L.) (Elsevier, 2013).

  49. Kushwaha, S. K. et al. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties. Nat. Commun. 7, 11456 (2016).

    Article  ADS  Google Scholar 

  50. Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Watanabe and M. P. Zaletel for collaboration on earlier works and helpful comments on the manuscript. We also thank T. Smidt for helpful discussions. R.C. and J.B.N. were supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under DOE Contract no. DE-AC02-05CH11231. Portions of the high-throughput workflow development were additionally supported by the Materials Project (Grant no. EDCBEE) through the US Department of Energy (DOE), Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-05CH11231. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy, and Laboratory Directed Research and Development Program at the Lawrence Berkeley National Laboratory, under Contract no. DE-AC02-05CH11231. A.V. and H.C.P. were supported by NSF DMR-141134 and ARO MURI Program W911NF-12-1-0461. We also thank NERSC for computational resources. A.V. and R.C. were also partly funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract no. DE-AC02-05-CH11231 (Quantum Materials program KC2202).

Author information

Authors and Affiliations

Authors

Contributions

R.C. and H.C.P. performed the calculations and analysis, and contributed equally to this work. J.B.N. and A.V. supervised the project.

Corresponding author

Correspondence to Hoi Chun Po.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 434 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Po, H., Neaton, J. et al. Topological materials discovery using electron filling constraints. Nature Phys 14, 55–61 (2018). https://doi.org/10.1038/nphys4277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing