Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasma-based beam combiner for very high fluence and energy

Abstract

Extreme optical fluences, much beyond the damage threshold of conventional optics, are of interest for a range of high-energy-density physics applications. Nonlinear interactions of multiple beams in plasmas have the potential to produce optics that operate at much higher intensity and fluence than is possible in solids. In inertial confinement fusion experiments indirectly driven with lasers, many beams overlap in the plasma inside a hohlraum, and cross-beam energy transfer by Brillouin scattering has been employed to redistribute energy between laser beams within the target. Here, we show that in a hot, under-dense plasma the energy of many input beams can be combined into a single well-collimated beam. The emerging beam has an energy of 4 kJ (over 1 ns) that is more than triple that of any incident beam, and a fluence that is more than double. Because the optic produced is plasma, and is diffractive, it is inherently capable of generating higher fluences in a single beam than solid-state refractive or reflective optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Beam combiner target.
Figure 2: Time-integrated measure of beam brightness.
Figure 3: Measured and simulated beam fluence.
Figure 4: Target detail and simulated conditions.

Similar content being viewed by others

References

  1. Basic Research Needs in HEDLP ReNeW 2011 (eds Rosner, R. & Hammer, D.) (US Department of Energy, 2011); https://nnsa.energy.gov/sites/default/files/nnsa/01-13-inlinefiles/Basic%20Research%20Needs%20in%20HEDLP-ReNeW-Download-opt_2011.pdf

  2. Bude, J. et al. High fluence laser damage precursors and their mitigation in fused silica. Opt. Express 22, 5839–5851 (2014).

    Article  ADS  Google Scholar 

  3. Perry, M. D. et al. Petawatt laser pulses. Opt. Lett. 24, 160–162 (1999).

    Article  ADS  Google Scholar 

  4. Haynam, C. A. et al. National Ignition Facility laser performance status. Appl. Opt. 46, 3276–3303 (2007).

    ADS  Google Scholar 

  5. Boehly, T. R. et al. Initial performance results of the OMEGA laser system. Opt. Commun. 133, 495–506 (1997).

    Article  ADS  Google Scholar 

  6. McKay, A., Spence, D. J., Coutts, D. W. & Mildren, R. P. Diamond-based concept for combining beams at very high average powers. Laser Photon. Rev. 11, 1600130 (2017).

    Article  ADS  Google Scholar 

  7. Ren, J., Cheng, W., Li, S. & Suckewer, S. A new method for generating ultraintense and ultrashort laser pulses. Nat. Phys. 3, 732–736 (2007).

    Article  Google Scholar 

  8. Mourou, G. A. et al. Exawatt-Zettawatt pulse generation and applications. Opt. Commun. 285, 720–724 (2012).

    Article  ADS  Google Scholar 

  9. Shvets, G., Fisch, N. J., Pukhov, A. & Meyer-ter-Vehn, J. Superradiant amplification of an ultrashort laser pulse in a plasma by a counterpropagating pump. Phys. Rev. Lett. 81, 4879–4882 (1998).

    Article  ADS  Google Scholar 

  10. Malkin, V. M., Shvets, G. & Fisch, N. J. Fast compression of laser beams to highly overcritical powers. Phys. Rev. Lett. 82, 4448–4451 (1999).

    Article  ADS  Google Scholar 

  11. Fisch, N. J. & Malkin, V. M. Generation of ultrahigh intensity laser pulses. Phys. Plasmas 10, 2056–2063 (2003).

    Article  ADS  Google Scholar 

  12. Ping, Y., Cheng, W., Suckewer, S., Clark, D. S. & Fisch, N. J. Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. Phys. Rev. Lett. 92, 175007 (2004).

    Article  ADS  Google Scholar 

  13. Cheng, W. et al. Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses. Phys. Rev. Lett. 94, 045003 (2005).

    Article  ADS  Google Scholar 

  14. Ren, J. et al. A compact double-pass Raman backscattering amplifier/compressor. Phys. Plasmas 15, 056702 (2008).

    Article  ADS  Google Scholar 

  15. Ping, Y. et al. Development of a nanosecond-laser-pumped Raman amplifier for short laser pulses in plasma. Phys. Plasmas 16, 123113 (2009).

    Article  ADS  Google Scholar 

  16. Kirkwood, R. K. et al. Observation of amplification of light by Langmuir waves and its saturation on the electron kinetic timescale. J. Plasma Phys. 77, 521–528 (2011).

    Article  ADS  Google Scholar 

  17. Yampolsky, N. A. & Fisch, N. J. Limiting effects on laser compression by resonant backward Raman scattering in modern experiments. Phys. Plasma 18, 056711 (2011).

    Article  ADS  Google Scholar 

  18. Andreev, A. A. et al. Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime. Phys. Plasmas 13, 053110 (2006).

    Article  ADS  Google Scholar 

  19. Weber, S. et al. Amplification of ultrashort laser pulses by Brillouin backscattering in plasmas. Phys. Rev. Lett. 111, 055004 (2013).

    Article  ADS  Google Scholar 

  20. Lancia, L. et al. Signatures of the self-similar regime of strongly coupled stimulated Brillouin scattering for efficient short laser pulse amplification. Phys. Rev. Lett. 116, 075001 (2016).

    Article  ADS  Google Scholar 

  21. Edwards, M. R., Jia, Q., Mikhailova, J. M. & Fisch, N. J. Short-pulse amplification by strongly coupled stimulated Brillouin scattering. Phys. Plasmas 23, 083122 (2016).

    Article  ADS  Google Scholar 

  22. Jia, Q., Barth, I., Edwards, M. R., Mikhailova, J. M. & Fisch, N. J. Distinguishing Raman from strongly coupled Brillouin amplification for short pulses. Phys. Plasmas 23, 053118 (2016).

    Article  ADS  Google Scholar 

  23. Lehmann, G. & Spatschek, K. H. Transient plasma photonic crystals for high-power lasers. Phys. Rev. Lett. 116, 225002 (2016).

    Article  ADS  Google Scholar 

  24. Balakin, A. A., Fraiman, G. M., Fisch, N. J. & Malkin, V. M. Noise suppression and enhanced focusability in plasma Raman amplifier with multi-frequency pump. Phys. Plasmas 10, 4856–4864 (2003).

    Article  ADS  Google Scholar 

  25. Kirkwood, R. K. et al. A review of laser-plasma interactions physics of indirect drive fusion plasma. Phys. Control. Fusion 55, 103001 (2013).

    Article  ADS  Google Scholar 

  26. Dewald, E. et al. Early-time symmetry tuning in the presence of cross-beam energy transfer in ICF experiments on the national ignition facility. Phys. Rev. Lett. 111, 235001 (2013).

    Article  ADS  Google Scholar 

  27. Turnbull, D. P. et al. Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments. Phys. Rev. Lett. 114, 125001 (2015).

    Article  ADS  Google Scholar 

  28. Hurricane, O. A. et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343–348 (2014).

    Article  ADS  Google Scholar 

  29. Meezan, N. B. et al. Indirect drive ignition at the National Ignition Facility. Plasma Phys. Control. Fusion 59, 014021 (2017).

    Article  ADS  Google Scholar 

  30. Chaves, J. Introduction to Nonimaging Optics 2nd edn (CRC Press, 2015).

    Google Scholar 

  31. Fournier, K. B. et al. A geophysical shock and air blast simulator at the National Ignition Facility. Rev. Sci. Instrum. 85, 095119 (2014).

    Article  ADS  Google Scholar 

  32. Kruer, W. L., Wilks, S. C., Afeyan, B. B. & Kirkwood, R. K. Energy transfer between crossing laser beams. Phys. Plasmas 3, 382–385 (1996).

    Article  ADS  Google Scholar 

  33. Berger, R. L. et al. On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams. Phys. Plasmas 5, 4337–4356 (1998).

    Article  ADS  Google Scholar 

  34. Marinak, M. M. et al. Three-dimensional HYDRA simulations of National Ignition Facility targets. Phys. Plasmas 8, 2275–2280 (2001).

    Article  ADS  Google Scholar 

  35. Gbur, G. & Wolf, E. The Rayleigh range of partially coherent beams. Opt. Commun. 199, 295–304 (2001).

    Article  ADS  Google Scholar 

  36. Kirkwood, R. K. et al. Implementation and optimization of a plasma beam combiner at NIF. Bull. Am. Phys. Soc. http://meetings.aps.org/link/BAPS.2015.DPP.UP12.21 (2015).

  37. Williams, E. A. On the control of filamentation of intense laser beams propagating in underdense plasma. Phys. Plasmas 13, 056310 (2006).

    Article  ADS  Google Scholar 

  38. Williams, E. A. et al. Effects of ion trapping on crossed-laser-beam stimulated Brillouin scattering. Phys. Plasmas 11, 231–244 (2004).

    Article  ADS  Google Scholar 

  39. Michel, P. et al. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett. 102, 025004 (2009).

    Article  ADS  Google Scholar 

  40. Kirkwood, R. K. et al. Amplification of light in a plasma by stimulated ion acoustic waves driven by multiple crossing pump beams. Phys. Rev. E 84, 026402 (2011).

    Article  ADS  Google Scholar 

  41. Turnbull, D. P. et al. Refractive index seen by a probe beam interacting with a laser-plasma system. Phys. Rev. Lett. 118, 015001 (2017).

    Article  ADS  Google Scholar 

  42. Kirkwood, R. K. et al. Observation of saturation of energy transfer between copropagating beams in a flowing plasma. Phys. Rev. Lett. 89, 215003 (2002).

    Article  ADS  Google Scholar 

  43. Kirkwood, R. K. et al. Saturation of power transfer between two copropagating laser beams by ion-wave scattering in a single-species plasma. Phys. Plasmas 12, 112701 (2005).

    Article  ADS  Google Scholar 

  44. Town, R. P. J. et al. Analysis of the National Ignition Facility ignition hohlraum energetics experiments. Phys. Plasmas 18, 056302 (2011).

    Article  ADS  Google Scholar 

  45. Michel, P. et al. Saturation of multi-laser beams laser-plasma instabilities from stochastic ion heating. Phys. Plasmas 20, 056308 (2013).

    Article  ADS  Google Scholar 

  46. Williams, E. et al. The frequency and damping of ion acoustic waves in hydrocarbon (CH) and two-ion-species plasmas. Phys. Plasmas 2, 129–138 (1995).

    Article  ADS  Google Scholar 

  47. Michel, P. et al. Three-wavelength scheme to optimize hohlraum coupling on the National Ignition Facility. Phys. Rev. E 83, 046409 (2011).

    Article  ADS  Google Scholar 

  48. Moody, J. D. et al. Multi-step redirection of ultra high power lasers in a plasma. Nat. Phys. 8, 344–349 (2012).

    Article  Google Scholar 

  49. Niemann, C. et al. Stimulated forward Raman scattering in large scale-length laser-produced plasmas. J. Inst. 6, P10008 (2011).

    ADS  Google Scholar 

  50. Pickworth, L. A. et al. Determination of the laser intensity applied to a Ta witness plate from the measured X-ray signal using a pulsed micro-channel plate detector. High Energy Density Phys. 23, 159–166 (2017).

    Article  ADS  Google Scholar 

  51. Maddox, B. R. et al. High-energy X-ray backlighter spectrum measurements using calibrated image plates. Rev. Sci. Instrum. 82, 023111 (2011).

    Article  ADS  Google Scholar 

  52. Zimmerman, G. & Kruer, W. The Lasnex code for intertial confinement fusion. Comments Plasma Phys. Control. Fusion 2, 85–90 (1975).

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to the staff of the NIF laser facility for carrying out these experiments and insuring that a large number of detailed requirements of the experiments were met, as well as to B. Wallin and K. Budil for their encouragement of this work. R.K.K. gratefully acknowledges the contributions of R. L. Berger in performing the kinetic calculations of the parameters in used in equation (1), and the help of M. M. Marinak in carrying out the Hydra simulations shown in Fig. 4.

Author information

Authors and Affiliations

Authors

Contributions

The concept for the beam combiner design we describe was formulated and its design carried out by R.K.K., R.A.L., S.C.W., K.B.F., D.P.T. and W.H.D. The development of the technique to measure the transmitted beam properties was done by R.K.K., D.P.T., L.A.P., O.L.L., J.D.M. and M.D.R. The final phase of implementation and integration with the NIF laser facility was carried out by R.K.K., S.C.W., D.P.T., L.A.P., T.C., L.D., P.A.M., J.D.M., O.L.L., D.J.S., B.J.M., B.M.V.W. and B.E.B., which included assessments of likely output beam performance for its impact on the facility and optimally integrating the experimental requirements with other facility demands. Actual execution of experiments was carried out by D.P.T., R.K.K. and L.A.P. Post experimental pF3D simulations were carried out by T.C., L.D. and P.A.M., and final revisions of the manuscript were considered by all authors.

Corresponding author

Correspondence to R. K. Kirkwood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirkwood, R., Turnbull, D., Chapman, T. et al. Plasma-based beam combiner for very high fluence and energy. Nature Phys 14, 80–84 (2018). https://doi.org/10.1038/nphys4271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing