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Multidimensional entropy landscape of
quantum criticality
K. Grube1*, S. Zaum1, O. Stockert2, Q. Si3 and H. v. Löhneysen1,4*
The third law of thermodynamics states that the entropy of
any system in equilibrium has to vanish at absolute zero
temperature. At nonzero temperatures, on the other hand,
matter is expected to accumulate entropy near a quantum
critical point, where it undergoes a continuous transition from
one ground state to another1,2. Here, we determine, based
on general thermodynamic principles, the spatial-dimensional
profile of the entropy S near a quantum critical point and
its steepest descent in the corresponding multidimensional
stress space. We demonstrate this approach for the canonical
quantum critical compound CeCu6−xAux near its onset of
antiferromagnetic order2. We are able to link the directional
stress dependence of S to the previously determined geometry
of quantum critical fluctuations3. Our demonstration of the
multidimensional entropy landscape provides the foundation
to understand how quantum criticality nucleates novel phases
such as high-temperature superconductivity.

Quantum criticality arises near a second-order phase transition
that is driven to zero temperature by competing interactions. For
metallic systems, it provides a mechanism to generate new types of
electron-derived excitations that are distinct from Landau’s Fermi
liquid2. Because quantum fluctuations are enhanced when the di-
mensionality is reduced, quantum critical points (QCPs) often arise
in anisotropic systems. The quantum critical fluctuations lead to
unconventional scaling behaviour and the accumulation of entropy
at very low T , thereby allowing unusual electronic excitations and
new phases. The enhanced entropy S upon approaching a QCP
has been probed by measurements of the specific heat, and its
dependence on pressure was studied by volume thermal expansion.
The entropy landscape has been studied up to now using a single
tuning parameter4. To understandhowentropy evolves as the system
traverses near aQCP, exploration of its profile in amultidimensional
parameter space is needed.

Heavy-fermion systems represent prototype settings for QCPs
induced by pressure. The latter tunes the hybridization of the almost
localized 4f states with the conduction band, thereby tilting the bal-
ance in the competition between Ruderman–Kittel–Kasuya–Yosida
(RKKY) andKondo interactions. Previous experiments on quantum
critical heavy-fermion systems5,6 focused on the volume expansivity
αV and volume Grüneisen ratio ΓV. Both αV/T and ΓV were found
to diverge as T→0, indicating a diverging pressure dependence of
S and a vanishing energy scale near the QCP, as predicted7. Spatial
anisotropy, a hallmark of many heavy-fermion systems, allows a
QCP to be accessed with multiple tuning parameters.

Here we show that, for anisotropic systems, the directional
dependence of the thermal expansivity provides a means to
determine the spatial-dimensional profile of the thermodynamic

singularities near a QCP. We establish a procedure to identify the
combination of stresses that aims directly at the QCP and accom-
plishes the steepest change of the entropy S. We thereby can find the
optimal way to approach the QCP and in principle directly link it
with the geometry of the underlying quantum critical fluctuations.

We now specify the quantities of interest to our study. While
the specific heat C reveals the T dependence of the entropy S,
the linear thermal-expansion coefficients are related to its uniaxial
pressure dependence: αi = ∂εi/∂T =−V−1∂S/∂σi. Here, εi and
σi are strain and stress, respectively, along the principal crystallo-
graphic axes, for orthorhombic crystal structures: i= a, b, c (see
Supplementary Note). V is the molar volume. If a system is dom-
inated by a single energy scale E∗, as in a Fermi liquid, C and
αi are proportional to each other. In this case, the proportion-
ality factor, the Grüneisen ratio, related to the normalized stress
dependence of E∗, Γi(σi)=Vαi/C=d lnE∗/dσi is constant. The
three components αi are then proportional to each other—that is,
their anisotropy is temperature independent, as Γi/Γj=αi/αj with
i, j=a,b, c. The quantities define the volume expansivity αV=

∑
i αi

and volume Grüneisen ratio ΓV=
∑

iΓi.
For our study of anisotropic quantum criticality, we choose

the heavy-fermion compound CeCu6−xAux , which is characterized
by a strongly anisotropic structure with orthorhombic symmetry,
space group Pmna (neglecting a minute monoclinic distortion, see
Methods), and Ising-like magnetic anisotropy8. Consequently, all
directional properties exhibit a considerable dependence on the
crystal orientation. In addition, inelastic neutron scattering exper-
iments3 give evidence that the critical, incommensurate magnetic
fluctuations at the QCP (xc ≈ 0.1) are of quasi-two-dimensional
(2D) nature and form two sets of correlated planes that are
spanned by [0, 1, 0] and approximately [0.73, 0,±0.68]. Therefore,
CeCu5.9Au0.1 constitutes an ideal platform to investigate the effect of
anisotropic uniaxial pressures on quantum critical behaviour.

Figure 1a shows the 4f -electron contribution to the thermal-
expansion coefficients αi of CeCu5.9Au0.1 as a function of temper-
ature in the range up to the Kondo temperature, TK≈ 6K. All αi
display characteristic features with slightly different positions in
temperature. While αc has a broad maximum at∼1.5 K, αa and αb
show clear shoulders at ∼0.3 K. In this T range, αa(T ) is negative
while αc(T ) and αb(T ) are positive. The low-T data below ∼1K
cover the quantum critical regime. The data above 6K change their
anisotropy, reflecting the effect of the known crystalline-electric-
field (CEF) excitations—that is, at ≈7meV, as found in inelastic
neutron scattering and specific-heat measurements9.

In the quantum critical temperature regime, the linear thermal
expansivities divided by temperature, αi/T (i= a, b, c), are shown
along each direction in Fig. 1b on a logarithmic T scale. Each
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Figure 1 | Thermal expansion of CeCu5.9Au0.1. a, Linear thermal-expansion
coe�cients αi as a function of temperature for all three directions i=a,b, c
in the orthorhombic notation (see Methods). With decreasing temperature,
the varying anisotropy of αi signals a change of the underlying dominating
interactions. b, The linear thermal-expansion coe�cients αi from a divided
by T as a function of ln T. c, The volume thermal-expansion coe�cient
divided by T (left-hand scale) and the specific-heat coe�cient C/T
(right-hand scale) versus ln T. The solid lines are fits to the data as
described in the text.

component αi/T tends to diverge towards low temperatures, indi-
cating non-Fermi-liquid behaviour. The same is also true for the vol-
ume thermal-expansion coefficient divided by temperature plotted
in Fig. 1c. This should be contrasted to a Fermi liquid, where αi/T
is equal to−V−1dγ /dσi, with the Sommerfeld coefficient γ =C/T
expected to be constant at low T . The divergences of αi/T versus T
for T→0 complement the well-known10 logarithmic divergence of
γ versus T observed in the same compound, also shown in Fig. 1c.
However, the divergences of αi/T are much stronger than that of γ
as predicted7. Indeed, their ratio, the Grüneisen ratios Γi=Vαi/C ,
diverge for each direction i= a, b, c, as demonstrated in Fig. 2a.
The same holds for the hydrostatic-pressure Grüneisen ratio ΓV
(see Fig. 2b).

We now turn to the analysis of the low-T divergences.
Because the Sommerfeld coefficient is best described by a
logarithmic temperature dependence, we have fitted the linear
thermal coefficients in terms of powers of logarithm. For all
three directions, we find that the best representation of the
data is given by αi/T = ai[ln2(T0i/T )], with ai = −1.01(3),
1.92(3), 1.64(3)×10−6 K−2, and T0i=2.41(14), 2.43(7), 8.18(49) K
(i=a,b, c) (see solid lines in Fig. 1b). To obtain the best ln2 T
fit, a constant (Fermi-liquid like) contribution a0i/T =−0.60(8),
1.67(8), and 1.68(25)×10−6 K−2 was assumed. The T0i are of
similarmagnitude toT ′0=6.33(7)K extracted from γ =a′ ln(T ′0/T )
(ref. 10). T ′0 and T0i constitute cut-off temperatures for the quantum
critical behaviour arising from the competition between Kondo
and RKKY interactions and are, therefore, constrained to the
Kondo energy scale TK. Thus, the different T0i might signal an
anisotropy of the stress dependence of TK due to the shape of
the 4f ground-state wavefunction. As T ′0 and T0i mark the upper
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Figure 2 | Grüneisen ratios of CeCu5.9Au0.1. a, The stress Grüneisen ratios
Γi along the three crystal axes as a function of T. b, The
hydrostatic-pressure Grüneisen ratio versus T. The solid lines are fits as
described in the text.

limit of the non-Fermi-liquid regime, summing over ln2(T0i/T )
with different T0i will at T�T0i still result in a ln2 T dependence
of αV/T , as indeed shown by the fit (solid line) in Fig. 1c.
The fit parameters for αV/T are b = 2.70(5) × 10−6 K−2 and
T0=4.69(22)K. Previous work on polycrystalline CeCu5.8Ag0.2,
which shows quantum critical behaviour in the specific heat closely
resembling that of CeCu5.9Au0.1, reported a linear dependence of
αV/T versus lnT for 0.07≤T≤0.5 K (ref. 6).

The temperature dependence of our Grüneisen ratios Γi (Fig. 2),
in line with the expectation, shows an approximate form of
Γi= aΓ ,i ln(TΓ ,i/T ). Because of T0i 6= T ′0, this dependence is only
approximately observed at T < 1K. The deviation at higher T is
taken into account by adding a corrective term 2ci+ c21/[ln(T0/T )],
with ci= ln(T ′0/T0i).

To shed light on the origin of the logarithmic temperature
dependence of Γi, we first note that a divergent Grüneisen ratio
is expected for any QCP: scaling dictates its T dependence as
1/T y , where the exponent y is the scaling dimension of the
operator that tunes through the zero-temperature transition7. For
a spin-density-wave QCP, the expected exponent is y = 1, which
is inconsistent with our measured Grüneisen ratio. In a local QCP
involving a Kondo destruction11, as arising in an Ising-anisotropic
Kondo lattice appropriate for CeCu6−xAux , the corresponding
scaling dimension is y = 0+ (see Methods), which is consistent
with the observed logarithmic divergence of the Grüneisen ratio.
We note that the model of critical spin fluctuations bootstrapped
by energy fluctuations proposed C/T ∼ T−1/8 for the specific
heat of a 2D QCP12,13: since weak power-law and logarithmic T
dependencies are difficult to distinguish, a small-exponent power
law is compatible with the C/T data of CeCu5.9Au0.1; however, this
same model predicted a T−1 dependence for αi/T , which is much
stronger than the observed ln2T dependence.

Regardless of the (model-dependent) analytical form of the di-
vergence of the volume Grüneisen ratio, the natural question arises
of how an anisotropic system such as CeCu5.9Au0.1 would respond
to stress in an arbitrary direction. The above determination of αi
allows us to describe geometrically the components of the entropy
derivatives with respect to stress ∂S/∂σi (Supplementary Note).
For orthorhombic systems, the three normal stresses σi are linearly
independent of each other and span a Cartesian coordinate system.
The steepest change of S is given by the gradient that is formed by
the components along each axis:

∇S= (∂S/∂σa,∂S/∂σb,∂S/∂σc)

This vector determines the stress combination that maximizes the
entropy variation. The construction leads to an entropy landscape
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perpendicular to ∇S. Accordingly, Γ(cb) does not diverge at low T as shown in Fig. 4. b, Two-dimensional analogue of the entropy landscape discussed for a
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in the parameter space of directional stresses for each temperature.
The result of this construction for CeCu5.9Au0.1 at T=1K is shown
in Fig. 3a.

For a vanishingly small but nonzero temperature, the red arrow
∇S describes the steepest slope in the entropy landscape as the
system is tuned towards the QCP, as illustrated for a 2D stress space
(σx , σy) in Fig. 3b. On the other hand, tuning along any direction
perpendicular to ∇S, marked by the red circle in Fig. 3a, will leave
the distance to the QCP as a function of stress unaltered, and thus
result in a vanishing critical contribution to the thermal expansion
along this particular direction. From Fig. 1b we infer from the
roughly constant ratios αi/αj (i, j= a, b, c) that the direction ∇S is
only weakly dependent on temperature. We note that exactly at the
QCP, ∂S/∂δ is strictly zero for any trajectory passing through the
QCP at δc. At δc, ∂S/∂δ changes its sign14. Thus, our data indicate
that the critical concentration xc is in fact a little larger than x=0.1
for our sample.

The dependence of S on any arbitrary stress combination σ x can
be expressed as the projection of ∇S onto the unit vector in the
σ x direction:

∂S/∂σx=∇S ·σ x/σx

This allows us to discuss the isotropic and anisotropic contributions
to ∇S, corresponding to the responses to the hydrostatic
pressure and the so-called pure shear stresses, respectively
(see Supplementary Note). The hydrostatic pressure is defined
as p= p · (1, 1, 1), resulting in the well-known volume thermal
expansion: αV=−V−1∇S ·p/p=−V−1divS=V−1

∑
i αi.

The pure shear stresses are planar stresses, represented by
combinations of two perpendicular uniaxial pressures of opposite
sign, for example, σ (ca)= p · (−1, 0, 1). As they are orthogonal to
the hydrostatic pressure, σ (ij) · p= 0, they affect only anisotropic
stress dependences. For an elastically homogeneous solid, their
application results in the cancellation of the Poisson effect so that
the shape of the solid is changed only in the (ij) plane, while the
volume remains constant (see Supplementary Note).

This leads us to analysing the responses to the pure shear
stresses for an anisotropic system such as CeCu5.9Au0.1, which are
not accessible by the hydrostatic-pressure or volume-dependent
αV and ΓV. These stress combinations are proportional to the
differences of the linear thermal-expansion coefficients along
different, perpendicular directions: ∂S/∂σ(ij)∝α(ij)=αi−αj, where
the hydrostatic, isotropic contributions αV/3 cancel each other.
Figure 4a shows the resulting differences divided by T . They exhibit
contrasting scaling behaviour. Whereas α(ca)/T and α(ba)/T exhibit
divergenceswith ln2T dependence, as do the single components and
αV/T , α(cb)/T levels off below 1K. Correspondingly, Γ(cb)=Γc−Γb
becomes roughly constant at T < 0.5 K, thus seemingly pointing
to a stability of the Fermi-liquid state for T → 0 although
the specific-heat coefficient γ (T ) clearly demonstrates non-Fermi
liquid behaviour. This apparent dichotomy can be resolved by
noting that none of the stress combinations perpendicular to ∇S
(red circle in Fig. 3a) will tune the system to theQCP. InCeCu5.9Au0.1
it is accidental that one of the pure shear stresses is almost
orthogonal to∇S. This is visualized by the fact that the direction of
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the pure shear stress σ(cb) in stress space (that is, (0,−1, 1)) is close
to the direction of the intersection line of the red and blue circles
in Fig. 3a.

Knowing the entropy landscape of CeCu5.9Au0.1, we can ask
how the anisotropic stress space connects with the geometry of
the anisotropic quantum critical magnetic fluctuations determined
by inelastic neutron scattering2 (the important differences between
stress and strain for anisotropic systems are outlined in the
Methods). To address this issue, we project the maximal stress
dependence of S onto the pure-shear-stress plane. This is the pure
shear stress applied to the ac plane (see Fig. 3a), as can indeed
be seen from Fig. 4b, showing Γ(ca) to be the largest Γ(ij). The
application of this pure shear stress σ(ca) leads to a distortion of
the ca plane which is always normal to the planes of quantum
critical fluctuations. This is, in fact, the only stress combination
which does not alter the distance between nearest-neighbour Ce
atoms, but results in a tilt of the almost orthogonal fluctuating planes
against each other (Supplementary Fig. 3). We note that a change
of S is also induced by σ(ba). Thus, a linear combination of σ(ca)
and σ(ba) would also be perpendicular to p. The components of this
vector in the pure-shear-stress plane would be a1σ(ca)+a2σ(ba), with
a1/a2< 10%, as can be seen by the thinner red arrows in Fig. 3a.
Physically, σ(ba) corresponds to a distortion of the a–b plane (with
c= const), and thus to a (smaller) change of the inclination angle
between fluctuating planes. This merely reflects the fact that σ(ca)
and σ(ba) are not linearly independent. How these observations relate
to the microscopic anisotropies of RKKY versus Kondo interactions
requires a detailed determination of the electronic structure, which
remains a challenge for the future.

Our determination of the entropy landscape in CeCu5.9Au0.1
explicitly demonstrates how entropy climbs as the system evolves to-
wards its fully exposed quantum critical point in amultidimensional
parameter space. The pronounced entropy enhancement renders
quantum critical systems highly susceptible to the development
of novel phases, such as unconventional superconductivity. This
fundamentally promotes the understanding of superconductivity
for heavy-fermion systems15. Another prominent example along
this line is the cuprates16, where the entropy as a function of hole
doping, nh, peaks at the value where the Tc(nh) dome is maximum17.
This entropy maximum is found well above Tc and, moreover, the
anisotropy of the cuprates due to the quasi-2D electronic structure
entails a strongly anisotropic stress dependence18. Other pertinent
systems with strong correlations include the iron pnictides and
chalcogenides19, and organic charge-transfer salts20. In all these sys-
tems, novel phases emerge close to instabilities that are characterized
by a strongly enhanced entropy in a phase space which is spanned
up by multiple control parameters.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Experimental set-up. The thermal-expansion measurements were carried out in a
temperature range from 30mK to room temperature by using a home-built
capacitive dilatometer mounted in a dilution refrigerator (30mK–9K) and in a
helium gas-flow cryostat (5–300K). The raw thermal-expansion data were
corrected for the expansion of the dilatometer by using measurements of Si and Cu
single crystals. The investigated CeCu5.9Au0.1 single crystal was grown by the
Czochralski method under a high-purity argon atmosphere, oriented with Laue
X-ray diffraction, and spark-cut to yield a cube of approximately 3mm edge length.
For this length, the low-temperature resolution (1L/L) of the measurements
reached 10−10. The measurements were performed along the three axes of the
orthorhombic crystal structure (with orthorhombic axes notation), neglecting the
very small monoclinic distortion setting in below Ts≈64K with ϕ0=90.7◦ for
T�Ts (refs 21–23). The 4f -electron contribution to the thermal expansivity was
determined by subtracting the expansivities of an isostructural LaCu6

single crystal24.

Pressure versus volume—stress versus strain. Throughout the main part of this
paper we have used pressure-dependent thermodynamic quantities, such as the
pressure-dependent entropy and the Grüneisen ratios Γi(σi) as a function of stress.
However, historically, the strain-dependent (or volume-dependent) Grüneisen
parameters Γ (ε)

i (εi)=
∑3

j=1 cijΓj have been regarded as more fundamental, because
they are not affected by the elasticity of the material—here taken into account by
the elastic constants cij—and are related directly to atomic positions or bond
lengths. In particular, they are corrected for the Poisson effect—that is, the dilation
(compression) of a solid body perpendicular to the direction of the applied
compressive (tensile) stress. For studies of critical phenomena, on the other hand,
which have been performed at constant pressure, as our experiments, the use of
Γ (ε)

i is inappropriate, because here pressure constitutes the control parameter.
In addition, the conversion to Γ (ε)

i demands the knowledge of the elastic
constants cij. Their determination requires elaborate measurements, as compounds
of lower crystal symmetry are characterized by a large number of independent cij
constants. The elastic behaviour of CeCu6−xAux is described by nine constants; six
of which have been published so far for x=0 and partly for 0.1 (refs 25–28).
Between 100mK and 10K they change by less than1cij/cij=10−3. The elasticity of
CeCu6−xAux is mainly determined by the chemical bonds between the Cu/Au
atoms and the outer Ce 6s2 and 5d1 electrons. Consequently, the cij can be regarded
as temperature independent and corresponding linear combinations of Γ (ε)

i show
the same T dependence as Γi(σi). It is worth noting that the weak coupling of the
critical fluctuations to the crystal lattice ensures that the scaling behaviour is not
obscured by a softening of the lattice.

The conversion from stress to strain dependences does not qualitatively change
the overall behaviour of CeCu6−xAux , as can be checked if all cij are known. We
therefore have determined the remaining elastic constants c12, c13, and c23 by
employing measurements of the linear compressibilities ki=−∂εi/∂p (with
i=a,b, c in Voigt’s notation) by using a miniaturized capacitive dilatometer built
into a gas pressure cell29,30). To ensure hydrostatic-pressure conditions, we used
helium as pressure transmitting medium. For CeCu6 and T=10K, the measured
linear compressibilities amount to ka=2.884×10−3 GPa−1,
kb=4.45×10−3 GPa−1, and kc=3.435×10−3 GPa−1. The elastic constants hardly
change between x=0 and 0.1 (ref. 28). To complete our measurements, we have
chosen the cij data fromWeber et al.25 due to their better agreement with ours and
the low-temperature measurements from Finsterbusch and colleagues28. By using
these constants, we can estimate the dependence of the lattice parameters on
arbitrary combinations of stresses. For a pure shear stress of the c–a plane,
σ (ca)= (σ(ca)/

√
2)(−1, 0, 1), the stress dependence along the a axis ∂εa/∂σ(ca) is

approximately equal to−∂εc/∂σ(ca), and with≈0.02GPa−1 clearly larger than the
change of the entire volume strain ∂εV/∂σ(ca)≈0.0005GPa−1. Pure shear stresses
applied to other planes result in similar, negligibly small changes of εV. Therefore,
the pure shear stresses can be approximately understood as pure shear
strains—that is, distortions without a sizable volume change.

The influence of the elastic properties on the anisotropy of the linear
thermal-expansion coefficients and the Grüneisen ratios can be determined from
the related strain dependences of the entropy ∂S/∂εi=V ·

∑3
j=1 cijαj and the

aforementioned Grüneisen parameters Γ (ε)

i . At low temperature they show the
same anisotropy as the stress-dependent quantities. In conclusion, both stress and
strain dependences can be explained by a combination of a hydrostatic, isotropic
volume effect and a high sensitivity to distortions of the c–a plane.

Functional form of the Grüneisen ratio divergences from scaling analysis.We
consider the Kondo-lattice model as specified by the Hamiltonian

H=
∑
ijσ

tijc†
iσ cjσ +

∑
i

JKSi · sc,i+
∑

ij

Iij
2
Si ·Sj (1)

Here Si and sc,i, respectively, describe a local moment at site i and the spin of the
conduction electrons at the same site, and tij is the tight-binding hopping

parameter whose spatial Fourier transform yields the band dispersion εk. The
parameters JK and Iij are the Kondo and RKKY exchange interactions, respectively.
Within the extended dynamical mean-field theory31, the local properties of this
lattice model are determined through a self-consistent Bose–Fermi Kondo model:

Himp= JKS · sc+
∑
p,σ

Epc†
pσ cpσ +g

∑
p

S ·
(
ϕp+ϕ

†
−p

)
+
∑

p

wpϕ
†
p ·ϕp (2)

where Ep and wp are the dispersions determined self-consistently for the fermionic
bath (cpσ ) and bosonic bath (ϕp), respectively. The locally quantum critical point
with a Kondo destruction arises in the self-consistent solution to the model if the
magnetic fluctuations are two-dimensional31. At the locally quantum critical point,
the density of states of the fermionic bath is∑

p

δ(ω−Ep)=N0 (3)

that is, the bare density of states of the conduction electrons, whereas the spectral
function of the bosonic bath is∑

p

[
δ(ω−wp)−δ(ω+wp)

]
= (K 2

0 /π)|ω|
γ sgnω for |ω|<Λ (4)

whereΛ is a cutoff frequency. Self-consistently, the power exponent of ω is γ =0+.
To determine the scaling dimension of the most relevant operator for the Kondo

destruction, we use an ε-expansion procedure discussed earlier32. Here ε≡1−γ ,
which in the end is set to its self-consistent value 1−. Unlike the critical exponent for
the local spin susceptibility, the exponent pertinent to our analysis here turns out
to depend on the symmetry in the spin space. To show this, we allow the exchange
interactions in the longitudinal (between the Z components) and transverse
(between the XY components) channels to be different. For the Kondo exchange
interaction, they are given by J ZK and J⊥K , respectively. Likewise, for the spin–boson
coupling, they correspond to g Z and g⊥, respectively. These are the four coupling
constants, Ai (i=1, 2, 3, 4), that come into the renormalization-group analysis.

The beta functions βAi for the anisotropic Bose–Fermi Kondo problem with xy
invariance are given in ref. 32. The fixed points are determined by setting βAi=0.
The scaling dimensions can be obtained by solving for the eigenvalues of the 4×4
matrix−∂βAi/∂Aj, evaluated at the fixed point. To order ε2, the largest eigenvalue
of the matrix is

λ=

√
5−1
2

ε+
5
√
5−9

8(5+
√
5)
ε
2
≈0.618034ε+0.0376644ε2 (5)

It is approximately equal to 0.62 and 0.66 to the linear and quadratic orders in ε,
respectively. For the ε=1− limit, this corresponds to the exponent η≈0.66 of the
temperature dependence of the Grüneisen ratio Γ ∝T−η . This value is consistent
with the Grüneisen ratio observed in YbRh2Si2 (ref. 5), in which the magnetic
anisotropy has the xy form. For the Ising case appropriate for CeCu6−xAux (ref. 33),
the ε-expansion is set up in terms of renormalization-group equations that
generalize those for the Kosterlitz–Thouless case (for ε=0) to nonzero ε. The
largest eigenvalue is λ=

√
2ε, to the linear order in ε. For small ε, this result

compares well with numerical results34. Here, however, the corrections from the
higher orders are difficult to determine. For the ε=1− limit, the numerical result34
is that λ approaches 0+. This corresponds to η=0+, which is consistent with a
logarithmically divergent Grüneisen ratio towards low T , as experimentally
observed here.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon
reasonable request.
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properties of the Kondo lattice compound CeCu6. J. Magn. Magn. Mater. 63,
309–311 (1987).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE PHYSICS | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys4113
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS4113 LETTERS
28. Finsterbusch, D. et al . Thermodynamic properties of CeCu6−xAux :

Fermi-liquid vs. non-Fermi-liquid behaviour. Ann. Phys. 508, 184–196 (1996).
29. Grube, K. Thermal Expansion of C60 Single Crystals under Pressure (PhD thesis,

Univ. Karlsruhe, Report FZKA 5611, 1995).
30. Fietz, W. H., Grube, K. & Leibrock, H. Dilatometry under high pressure.

High Pressure Res. 19, 373–378 (2000).
31. Si, Q., Rabello, S., Ingersent, K. & Smith, J. L. Local fluctuations in quantum

critical metals. Phys. Rev. B 68, 115103 (2003).

32. Zhu, L. & Si, Q. Critical local-moment fluctuations in the Bose–Fermi Kondo
model. Phys. Rev. B 66, 024426 (2002).

33. Tomanic, T., Hamann, A. & Löhneysen, H. v. Anisotropy of the magnetic
susceptibility of CeCu6−xAux near the quantum phase transition. Physica B
403, 1323–1324 (2008).

34. Glossop, M. T. & Ingersent, K. Kondo physics and dissipation: a numerical
renormalization-group approach to Bose–Fermi Kondo models. Phys. Rev. B
75, 104410 (2007).

NATURE PHYSICS | www.nature.com/naturephysics

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://dx.doi.org/10.1038/nphys4113
www.nature.com/naturephysics

	Multidimensional entropy landscape of quantum criticality
	Main
	Methods
	Experimental set-up.
	Pressure versus volume—stress versus strain.
	Functional form of the Grüneisen ratio divergences from scaling analysis.
	Data availability.

	Additional Information
	Acknowledgements
	References


