Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Equilibration and order in quantum Floquet matter

Abstract

Equilibrium thermodynamics is characterized by two fundamental ideas: thermalization—that systems approach a late time thermal state; and phase structure—that thermal states exhibit singular changes as various parameters characterizing the system are changed. We summarize recent progress that has established generalizations of these ideas to periodically driven, or Floquet, closed quantum systems. This has resulted in the discovery of entirely new phases which exist only out of equilibrium, such as the π-spin glass/Floquet time crystal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eigenstate properties in a local observable (density on a site) in a system of 1D hardcore bosons at half filling.
Figure 2: Floquet phases and their signatures in spectrum and correlators.

Similar content being viewed by others

References

  1. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Google Scholar 

  2. Schollwock, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  3. Nandkishore, R. & Huse, D. A. Many body localization and thermalization in quantum statistical mechanics. Ann. Rev. Condensed Matter Phys. 6, 15–38 (2015).

    Article  ADS  Google Scholar 

  4. Bordia, P., Lüschen, H., Schneider, U., Knap, M. & Bloch, I. Periodically driving a many-body localized quantum system. Nat. Phys. 13, 466–470 (2017).

    Article  Google Scholar 

  5. Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    Article  ADS  Google Scholar 

  6. Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    Article  ADS  Google Scholar 

  7. Grifoni, M. & Hänggi, P. Driven quantum tunneling. Phys. Rep. 304, 229–354 (1998).

    ADS  MathSciNet  Google Scholar 

  8. Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139–226 (2015).

    Article  ADS  Google Scholar 

  9. Nathan, F. & Rudner, M. S. Topological singularities and the general classification of Floquet–Bloch systems. New J. Phys. 17, 125014 (2015).

    Article  ADS  Google Scholar 

  10. Roy, R. & Harper, F. Periodic table for floquet topological insulators. Preprint at http://arXiv.org/abs/1603.06944 (2016).

  11. Eckardt, A., Weiss, C. & Holthaus, M. Superfluid–insulator transition in a periodically driven optical lattice. Phys. Rev. Lett. 95, 260404 (2005).

    Article  ADS  Google Scholar 

  12. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).

    Article  ADS  Google Scholar 

  13. Eckardt, A. Atomic quantum gases in periodically driven optical lattices. Preprint at http://arXiv.org/abs/1606.08041 (2016).

  14. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    Article  Google Scholar 

  15. Lazarides, A., Das, A. & Moessner, R. Equilibrium states of generic quantum systems subject to periodic driving. Phys. Rev. E 90, 012110 (2014).

    Article  ADS  Google Scholar 

  16. Abanin, D., De Roeck, W. & Huveneers, F. Exponentially slow heating in periodically driven many-body systems. Phys. Rev. Lett. 115, 256803 (2015).

    Article  ADS  Google Scholar 

  17. Ponte, P., Chandran, A., Papic, Z. & Abanin, D. A. Periodically driven ergodic and many-body localized quantum systems. Ann. Phys. 353, 196–204 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  18. D’Alessio, L. & Rigol, M. Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 041048 (2014).

    Google Scholar 

  19. Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. B 43, 2046–2049 (1991).

    Article  ADS  Google Scholar 

  20. Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994).

    Article  ADS  Google Scholar 

  21. Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

    Article  ADS  Google Scholar 

  22. Chandran, A. & Sondhi, S. L. Interaction stabilized steady states in the driven O(N) model. Phys. Rev. B 93, 174305 (2016).

    Article  ADS  Google Scholar 

  23. Prosen, T. Time evolution of a quantum many-body system: transition from integrability to ergodicity in the thermodynamic limit. Phys. Rev. Lett. 80, 1808–1811 (1998).

    Article  ADS  Google Scholar 

  24. Citro, R. et al. Dynamical stability of a many-body Kapitza pendulum. Ann. Phys. 360, 694–710 (2015).

    Article  MathSciNet  Google Scholar 

  25. Lazarides, A., Das, A. & Moessner, R. Periodic thermodynamics of isolated systems. Phys. Rev. Lett. 112, 150401 (2014).

    Article  ADS  Google Scholar 

  26. Gritsev, V. & Polkovnikov, A. Integrable Floquet dynamics. Preprint at http://arXiv.org/abs/1701.05276 (2017).

  27. Abanin, D., De Roeck, W. & Huveneers, F. Theory of many-body localization in periodically driven systems. Ann. Phys. 372, 1–11 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  28. Lazarides, A., Das, A. & Moessner, R. Fate of many-body localization under periodic driving. Phys. Rev. Lett. 115, 030402 (2015).

    Article  ADS  Google Scholar 

  29. Ponte, P., Papic, Z., Huveneers, F. & Abanin, D. A. Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015).

    Article  ADS  Google Scholar 

  30. Bukov, M., Heyl, M., Huse, D. A. & Polkovnikov, A. Heating and many-body resonances in a periodically driven two-band system. Phys. Rev. B 93, 155132 (2016).

    Article  ADS  Google Scholar 

  31. Huse, D. A., Nandkishore, R., Oganesyan, V., Pal, A. & Sondhi, S. L. Localization protected quantum order. Phys. Rev. B 88, 014206 (2013).

    Article  ADS  Google Scholar 

  32. Pekker, D., Refael, G., Altman, E., Demler, E. & Oganesyan, V. The Hilbert-glass transition: new universality of temperature-tuned many-body dynamical quantum criticality. Phys. Rev. X 4, 011052 (2014).

    Google Scholar 

  33. Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. On the phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).

    Article  ADS  Google Scholar 

  34. Senthil, T. Symmetry protected topological phases of quantum matter. Annu. Rev. Condens. Matter Phys. 6, 299–324 (2015).

    Article  ADS  Google Scholar 

  35. Khemani, V., von Keyserlingk, C. W. & Sondhi, S. L. Defining time crystals via representation theory. Preprint at http://arXiv.org/abs/1612.08758 (2016).

  36. Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

    Article  ADS  Google Scholar 

  37. Wilczek, F. Quantum time crystals. Phys. Rev. Lett. 109, 160401 (2012).

    Article  ADS  Google Scholar 

  38. von Keyserlingk, C. W., Khemani, V. & Sondhi, S. L. Absolute stability and spatiotemporal long-range order in Floquet systems. Phys. Rev. B 94, 085112 (2016).

    Article  ADS  Google Scholar 

  39. Russomanno, A., Santoro, G. E. & Fazio, R. Entanglement entropy in a periodically driven Ising chain. J. Stat. Mech. 2016, 073101 (2016).

    Article  MathSciNet  Google Scholar 

  40. Sen, A., Nandy, S. & Sengupta, K. Entanglement generation in periodically driven integrable systems: dynamical phase transitions and steady state. Phys. Rev. B 94, 214301 (2016).

    Article  ADS  Google Scholar 

  41. von Keyserlingk, C. W. & Sondhi, S. L. Phase structure of 1D interacting Floquet systems I: Abelian SPTs. Phys. Rev. B 93, 245145 (2016).

    Article  ADS  Google Scholar 

  42. von Keyserlingk, C. W. & Sondhi, S. L. Phase structure of one-dimensional interacting Floquet systems. II. Symmetry-broken phases. Phys. Rev. B 93, 245146 (2016).

    Article  ADS  Google Scholar 

  43. Potter, A. C., Morimoto, T. & Vishwanath, A. Classification of interacting topological Floquet phases in one dimension. Phys. Rev. X 6, 041001 (2016).

    Google Scholar 

  44. Else, D. V. & Nayak, C. Classification of topological phases in periodically driven interacting systems. Phys. Rev. B 93, 201103(R) (2016).

    Article  ADS  Google Scholar 

  45. Roy, R. & Harper, F. Abelian Floquet symmetry-protected topological phases in one dimension. Phys. Rev. B 94, 125105 (2016).

    Article  ADS  Google Scholar 

  46. Fidkowski, L. & Kitaev, A. Effects of interactions on the topological classification of free fermion systems. Phys. Rev. B 81, 134509 (2010).

    Article  ADS  Google Scholar 

  47. Titum, P., Berg, E., Rudner, M. S., Refael, G. & Lindner, N. H. The anomalous Floquet–Anderson insulator as a non-adiabatic quantized charge pump. Phys. Rev. X 6, 021013 (2016).

    Google Scholar 

  48. Bordia, P. et al. Coupling identical 1D many-body localized systems. Phys. Rev. Lett. 116, 140401 (2016).

    Article  ADS  Google Scholar 

  49. Choi, J.-y. et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  50. Else, D. V., Bauer, B. & Nayak, C. Prethermal phases of matter protected by time-translation symmetry. Phys. Rev. X 7, 011026 (2017).

    Google Scholar 

  51. Weidinger, S. A. & Knap, M. Floquet prethermalization and regimes of heating in a periodically driven, interacting quantum system. Preprint at http://arXiv.org/abs/1609.09089 (2016).

  52. Abanin, D. A., De Roeck, W., Ho, W. W. & Huveneers, F. Effective Hamiltonians, prethermalization and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Das, D. Huse, C. von Keyserlingk, V. Khemani, A. Lazarides and A. Polkovnikov for many useful discussions and for comments on the manuscript. This work was supported by the NSF-DMR via Grant No. 1311781 and the Alexander von Humboldt foundation via a Humboldt award (S.L.S.) as well as the Deutsche Forschungsgemeinschaft via SFB 1143 (R.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Moessner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moessner, R., Sondhi, S. Equilibration and order in quantum Floquet matter. Nature Phys 13, 424–428 (2017). https://doi.org/10.1038/nphys4106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing