Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-equilibrium effect in the allosteric regulation of the bacterial flagellar switch

Abstract

The switching mechanism of the flagellar motor provides the basis for the motile behaviour of flagellated bacteria. Its highly sensitive response has previously been understood in terms of equilibrium models, either the classical two-state concerted allosteric model, or more generally, the Ising-type conformation spread model. Here, we systematically study motor switching under various load conditions from high to zero load, under different proton motive force (pmf) conditions and varying the number of torque-generating units (stators). In doing so, we reveal the signature of a non-equilibrium effect. To consistently account for the motor-switching dependence on each those conditions, a previously neglected non-equilibrium effect—the energy input from the motor torque—has to be incorporated into models of the flagellar switch. We further show that this effect increases the sensitivity of the flagellar switch. Exploiting a very small fraction of the energy expense of the flagellar motor for functional regulation increases its sensitivity greatly. Similar mechanisms are expected to be found in other protein complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CCW (top) and CW (bottom) interval distributions for 149 motors of cells expressing cheY13DK106YW with 0.5-μm-diameter latex beads attached to short filament stubs.
Figure 2: CCW interval distributions for motors with different number of stators measured in motor resurrection experiments for motors in the CW bias group of 0.5 ± 0.1.
Figure 3: Modelling the flagellar switch.
Figure 4: Motor dose–response curve (CW bias versus CheY-P level) at zero load and high load simulated using the non-equilibrium conformation spread model.

Similar content being viewed by others

References

  1. Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003).

    Article  Google Scholar 

  2. Turner, L., Ryu, W. & Berg, H. C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801 (2000).

    Article  Google Scholar 

  3. Welch, M., Oosawa, K., Aizawa, S.-I. & Eisenbach, M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. Natl Acad. Sci. USA 90, 8787–8791 (1993).

    Article  ADS  Google Scholar 

  4. Cluzel, P., Surette, M. & Leibler, S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287, 1652–1655 (2000).

    Article  ADS  Google Scholar 

  5. Sourjik, V. & Berg, H. C. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 99, 12669–12674 (2002).

    Article  ADS  Google Scholar 

  6. Silverman, M. & Simon, M. Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74 (1974).

    Article  ADS  Google Scholar 

  7. Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–447 (2000).

    Article  ADS  Google Scholar 

  8. Bai, F. et al. Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 327, 685–689 (2010).

    Article  ADS  Google Scholar 

  9. Korobkova, E., Emonet, T., Vilar, J. M. G., Shimizu, T. S. & Cluzel, P. From molecular noise to behavioral variability in a single bacterium. Nature 428, 574–578 (2004).

    Article  ADS  Google Scholar 

  10. Korobkova, E. A., Emonet, T., Park, H. & Cluzel, P. Hidden stochastic nature of a single bacterial motor. Phys. Rev. Lett. 96, 058105 (2006).

    Article  ADS  Google Scholar 

  11. Wang, F., Yuan, J. & Berg, H. C. Switching dynamics of the bacterial flagellar motor near zero load. Proc. Natl Acad. Sci. USA 111, 15752–15755 (2014).

    Article  ADS  Google Scholar 

  12. Block, S. M., Segall, J. E. & Berg, H. C. Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 154, 312–323 (1983).

    Google Scholar 

  13. Tu, Y. The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwell’s demons. Proc. Natl Acad. Sci. USA 105, 11737–11741 (2008).

    Article  ADS  Google Scholar 

  14. Scharf, B. E., Fahrner, K. A., Turner, L. & Berg, H. C. Control of direction of flagellar rotation in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 95, 201–206 (1998).

    Article  ADS  Google Scholar 

  15. van Albada, S. B., Tanase-Nicola, S. & ten Wolde, P. R. The switching dynamics of the bacterial flagellar motor. Mol. Syst. Biol. 5, 316 (2009).

    Article  Google Scholar 

  16. Yuan, J. & Berg, H. C. Resurrection of the flagellar motor near zero load. Proc. Natl Acad. Sci. USA 105, 1182–1185 (2008).

    Article  ADS  Google Scholar 

  17. Yuan, J., Fahrner, K. A. & Berg, H. C. Switching of the bacterial flagellar motor near zero load. J. Mol. Biol. 390, 394–400 (2009).

    Article  Google Scholar 

  18. Yuan, J. & Berg, H. C. Thermal and solvent-isotope effects on the flagellar rotary motor near zero load. Biophys. J. 98, 2121–2126 (2010).

    Article  ADS  Google Scholar 

  19. Walter, J. M., Greenfield, D., Bustamante, C. & Liphardt, J. Light-powering Escherichia coli with proteorhodopsin. Proc. Natl Acad. Sci. USA 104, 2408–2412 (2007).

    Article  ADS  Google Scholar 

  20. Blair, D. F. & Berg, H. C. Restoration of torque in defective flagellar motors. Science 242, 1678–1681 (1988).

    Article  ADS  Google Scholar 

  21. Tipping, M. J., Steel, B. C., Delalez, N. J., Berry, R. M. & Armitage, J. P. Quantification of flagellar motor stator dynamics through in vivo proton-motive force control. Mol. Microbiol. 87, 338–347 (2013).

    Article  Google Scholar 

  22. Lele, L. P., Hosu, B. G. & Berg, H. C. Dynamics of mechanosensing in the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 110, 11839–11844 (2013).

    Article  ADS  Google Scholar 

  23. Tipping, M. J., Delalez, N. J., Lim, R., Berry, R. M. & Armitage, J. P. Load-dependent assembly of the bacterial flagellar motor. mBio 4, e00551 (2013).

    Article  Google Scholar 

  24. Duke, T. A. J., Le Novere, N. & Bray, D. Conformational spread in a ring of proteins: a stochastic approach to allostery. J. Mol. Biol. 308, 541–553 (2001).

    Article  Google Scholar 

  25. Fahrner, K. A., Ryu, W. S. & Berg, H. C. Bacterial flagellar switching under load. Nature 423, 938 (2003).

    Article  ADS  Google Scholar 

  26. Bai, F., Minamino, T., Wu, Z., Namba, K. & Xing, J. Coupling between switching regulation and torque generation in bacterial flagellar motor. Phys. Rev. Lett. 108, 178105 (2012).

    Article  ADS  Google Scholar 

  27. Xie, L., Altindal, T., Chattopadhyay, S. & Wu, X.-L. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. Proc. Natl Acad. Sci. USA 108, 2246–2251 (2011).

    Article  ADS  Google Scholar 

  28. Morse, M., Bell, J., Li, G. & Tang, J. X. Flagellar motor switching in Caulobacter crescentus obeys first passage time statistics. Phys. Rev. Lett. 115, 198103 (2015).

    Article  ADS  Google Scholar 

  29. Guzman, L.-M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Berg, J. Tang, and Y. Tu for comments. This work was supported by National Natural Science Foundation of China Grants 11374282, 21573214 (to J.Y.) and 11402265 (to R.Z.), Fundamental Research Funds for the Central Universities (WK2030020023, to J.Y.), and Anhui Natural Science Foundation Grant 1408085MA10 (to R.Z.). J.Y. and R.Z. are supported by the Chinese Government ‘1000 Youth Talent Program’.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. and R.Z. planned the work; F.W., H.S. and R.H. performed the measurements and the simulation with help from R.W.; J.Y. proposed the non-equilibrium model; J.Y., R.Z. and F.W. wrote the paper with inputs from other authors.

Corresponding authors

Correspondence to Rongjing Zhang or Junhua Yuan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Shi, H., He, R. et al. Non-equilibrium effect in the allosteric regulation of the bacterial flagellar switch. Nature Phys 13, 710–714 (2017). https://doi.org/10.1038/nphys4081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4081

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing