Article

Experimental observation of optical Weyl points and Fermi arc-like surface states

  • Nature Physics volume 13, pages 611617 (2017)
  • doi:10.1038/nphys4072
  • Download Citation
Received:
Accepted:
Published online:

Abstract

Weyl fermions are hypothetical two-component massless relativistic particles in three-dimensional (3D) space, proposed by Hermann Weyl in 1929. Their band-crossing points, called ‘Weyl points’, carry a topological charge and are therefore highly robust. There has been much excitement over recent observations of Weyl points in microwave photonic crystals and the semimetal TaAs. Here, we report on the experimental observation of ‘type-II’ Weyl points of light at optical frequencies, with the photons having a strictly positive group velocity along one spatial direction. We use a 3D structure consisting of laser-written waveguides, and show the presence of type-II Weyl points by observing conical diffraction along one axis when the frequency is tuned to the Weyl point; and observing the associated Fermi arc-like surface states. The realization of Weyl points at optical frequencies allows these novel electromagnetic modes to be further explored in the context of linear, nonlinear, and quantum optics.

  • Subscribe to Nature Physics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

  2. 2.

    et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

  3. 3.

    et al. Experimental discovery of Weyl semimetal taas. Phys. Rev. X 5, 031013 (2015).

  4. 4.

    , , & Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

  5. 5.

    , , , & Chern semimetal and the quantized anomalous Hall effect in HGCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

  6. 6.

    & Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

  7. 7.

    , & Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat. Commun. 5, 5161 (2014).

  8. 8.

    & The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

  9. 9.

    Chiral anomaly and transport in Weyl metals. J. Phys. Condens. Matter 27, 113201 (2015).

  10. 10.

    , , & Superconductivity of doped Weyl semimetals: finite-momentum pairing and electronic analog of the 3He-A phase. Phys. Rev. B 86, 214514 (2012).

  11. 11.

    , & Enabling single-mode behavior over large areas with photonic Dirac cones. Proc. Natl Acad. Sci. USA 109, 9761–9765 (2012).

  12. 12.

    , & Structured Weyl points in spin-orbit coupled fermionic superfluids. Phys. Rev. Lett. 115, 265304 (2015).

  13. 13.

    et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

  14. 14.

    , , & Weyl points and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013).

  15. 15.

    , & Topological photonic crystal with equifrequency Weyl points. Phys. Rev. A 93, 061801 (2016).

  16. 16.

    , , , & Weyl points in photonic-crystal superlattices. 2D Mater. 2, 034013 (2015).

  17. 17.

    et al. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun. 7, 12435 (2016).

  18. 18.

    , , & Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).

  19. 19.

    & Acoustic Weyl nodes from stacking dimerized chains. Phys. Rev. Lett. 117, 224301 (2016).

  20. 20.

    , & Hyperbolic Weyl point in reciprocal chiral metamaterials. Phys. Rev. Lett. 117, 057401 (2016).

  21. 21.

    , & Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states. Nat. Commun. 7, 13038 (2016).

  22. 22.

    et al. Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap. ACS Photon. 3, 1131–1137 (2016).

  23. 23.

    et al. Gyroid photonic crystal with Weyl points: synthesis and mid-infrared photonic characterization. APS March Meeting 2016, Abstract #S52.013 (2016).

  24. 24.

    , & Hyperbolic Weyl point in reciprocal chiral metamaterials. Phys. Rev. Lett. 117, 057401 (2016).

  25. 25.

    & Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B 43, 163001 (2010).

  26. 26.

    & Optical Waves in Crystals Vol. 10 (Wiley, 1984).

  27. 27.

    , , & Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

  28. 28.

    , & Anomalous topological phases and unpaired Dirac cones in photonic Floquet topological insulators. Phys. Rev. Lett. 117, 013902 (2016).

  29. 29.

    , , & Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).

  30. 30.

    et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

  31. 31.

    , & Conical diffraction: observations and theory. Proc. R. Soc. A 462, 1629–1642 (2006).

  32. 32.

    et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007).

  33. 33.

    , , & Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

  34. 34.

    & Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett. 117, 143901 (2016).

  35. 35.

    et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

  36. 36.

    et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

  37. 37.

    et al. Topological protection of photonic path entanglement. Optica 3, 925–930 (2016).

Download references

Acknowledgements

M.C.R. acknowledges the National Science Foundation under award number ECCS-1509546, the Penn State MRSEC, Center for Nanoscale Science, under award number NSF DMR-1420620, and the Alfred P. Sloan Foundation under fellowship number FG-2016-6418. K.P.C. acknowledges the National Science Foundation under award numbers ECCS-1509199 and DMS-1620218. D.L. and C.Y.D. acknowledge support by the Singapore National Research Foundation under grant No. NRFF2012-02, by the Singapore MOE Academic Research Fund Tier 2 Grant No. MOE2015-T2-2-008, and by the Singapore MOE Academic Research Fund Tier 3 grant MOE2011-T3-1-005.

Author information

Author notes

    • Jiho Noh
    • , Sheng Huang
    •  & Daniel Leykam

    These authors contributed equally to this work.

Affiliations

  1. Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

    • Jiho Noh
    •  & Mikael C. Rechtsman
  2. Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

    • Sheng Huang
    •  & Kevin P. Chen
  3. School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

    • Daniel Leykam
    •  & Y. D. Chong
  4. Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore

    • Y. D. Chong

Authors

  1. Search for Jiho Noh in:

  2. Search for Sheng Huang in:

  3. Search for Daniel Leykam in:

  4. Search for Y. D. Chong in:

  5. Search for Kevin P. Chen in:

  6. Search for Mikael C. Rechtsman in:

Contributions

J.N. carried out experimental measurements and performed the data analysis; S.H. developed the laser fabrication process and characterized the samples under the supervision of K.P.C. and with guidance from M.C.R.; D.L., C.Y.D. and M.C.R. conceived the idea and performed theoretical analysis and calculations; M.C.R. supervised the project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Mikael C. Rechtsman.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information