Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface-assisted single-crystal formation of charged colloids

Abstract

Substrate-induced heterogeneous nucleation is a promising way to form an extended single crystal with few defects while controlling its direction. Despite its technological importance, however, the physics behind this process has remained elusive. By studying the kinetic pathway of crystal nucleation and growth at a single-particle level both experimentally and numerically, we reveal that the keys to substrate-induced monomorphic single-crystal formation are matching of the angular symmetry between locally favoured structures formed in a supercooled liquid and the most stable crystal and non-trivial coupling of the former to substrate-induced layering in the liquid. These two conditions are crucial for direct formation of the most stable crystal while keeping its unique direction relative to the substrate. We also discuss special features of charged systems. Our finding indicates that pre-ordering in a supercooled liquid state under the influence of a substrate largely dominates the course of future crystallization, providing new insights into the control of heterogeneous crystallization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase behaviour and crystallization of charged colloidal systems.
Figure 2: Comparison between experiments and simulations for low φ.
Figure 3: Crystallization at high φ.
Figure 4: Structural transformation from bcc-to-hcp crystal at high φ.

Similar content being viewed by others

References

  1. Teal, G. K. Single crystals of germanium and silicon—basic to the transistor and integrated circuit. IEEE Trans. Electron Devices 23, 621–639 (1976).

    Article  Google Scholar 

  2. Sundar, V. C. et al. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303, 1644–1646 (2004).

    Article  Google Scholar 

  3. Boettinger, W. J. et al. Solidification microstructures: recent developments, future directions. Acta Mater. 48, 43–70 (2000).

    Article  Google Scholar 

  4. McPherson, A. EJB Reviews 1990 49–71 (Springer, 1991).

    Google Scholar 

  5. van Blaaderen, A., Ruel, R. & Wiltzius, P. Template-directed colloidal crystallization. Nature 385, 321–324 (1997).

    Article  ADS  Google Scholar 

  6. Jiang, P., Bertone, J. F., Hwang, K. S. & Colvin, V. L. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132–2140 (1999).

    Article  Google Scholar 

  7. Xia, Y., Gates, B., Yin, Y. & Lu, Y. Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12, 693–713 (2000).

    Article  Google Scholar 

  8. Sandomirski, K., Allahyarov, E., Löwen, H. & Egelhaaf, S. U. Heterogeneous crystallization of hard-sphere colloids near a wall. Soft Matter 7, 8050–8055 (2011).

    Article  ADS  Google Scholar 

  9. Engelbrecht, A., Meneses, R. & Schöpe, H. J. Heterogeneous and homogeneous crystal nucleation in a colloidal model system of charged spheres at low metastabilities. Soft Matter 7, 5685–5690 (2011).

    Article  ADS  Google Scholar 

  10. Palberg, T. Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. J. Phys. Condens. Matter 26, 333101 (2014).

    Article  Google Scholar 

  11. Esztermann, A. & Löwen, H. Wetting of topographically structured surfaces by crystalline phases. J. Phys. Condens. Matter 17, S429–S441 (2005).

    Article  ADS  Google Scholar 

  12. Dziomkina, N. V. & Vancso, G. J. Colloidal crystal assembly on topologically patterned templates. Soft Matter 1, 265–279 (2005).

    Article  ADS  Google Scholar 

  13. Tegze, G. et al. Diffusion-controlled anisotropic growth of stable and metastable crystal polymorphs in the phase-field crystal model. Phys. Rev. Lett. 103, 035702 (2009).

    Article  ADS  Google Scholar 

  14. Kelton, K. & Greer, A. L. Nucleation in Condensed Matter: Applications in Materials and Biology Vol. 15 (Elsevier, 2010).

    Google Scholar 

  15. Tanaka, H. Bond orientational order in liquids: towards a unified description of water-like anomalies, liquid–liquid transition, glass transition, and crystallization. Eur. Phys. J. E 35, 113 (2012).

    Article  Google Scholar 

  16. Leocmach, M., Russo, J. & Tanaka, H. Importance of many-body correlations in glass transition: an example from polydisperse hard spheres. J. Chem. Phys. 138, 12A536 (2013).

    Article  Google Scholar 

  17. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    Article  ADS  Google Scholar 

  18. Russo, J. & Tanaka, H. Crystal nucleation as the ordering of multiple order parameters. J. Chem. Phys. 145, 211801 (2016).

    Article  ADS  Google Scholar 

  19. Kawasaki, T. & Tanaka, H. Formation of a crystal nucleus from liquid. Proc. Natl. Acad. Sci. USA 107, 14036–14041 (2010).

    Article  ADS  Google Scholar 

  20. Russo, J. & Tanaka, H. The microscopic pathway to crystallization in supercooled liquids. Sci. Rep. 2, 505 (2012).

    Article  ADS  Google Scholar 

  21. Debela, T. T. et al. Nucleation driven by orientational order in supercooled niobium as seen via ab initio molecular dynamics. Phys. Rev. B 89, 104205 (2014).

    Article  ADS  Google Scholar 

  22. Russo, J., Romano, F. & Tanaka, H. New metastable form of ice and its role in the homogeneous crystallization of water. Nat. Mater. 13, 733–739 (2014).

    Article  ADS  Google Scholar 

  23. Tan, P., Xu, N. & Xu, L. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nat. Phys. 10, 73–79 (2014).

    Article  Google Scholar 

  24. Pusey, P. N. & van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    Article  ADS  Google Scholar 

  25. Yethiraj, A. & van Blaaderen, A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421, 513–517 (2003).

    Article  ADS  Google Scholar 

  26. Hamaguchi, S., Farouki, R. T. & Dubin, D. H. E. Triple point of Yukawa systems. Phys. Rev. E 56, 4671–4682 (1997).

    Article  ADS  Google Scholar 

  27. Hynninen, A.-P. & Dijkstra, M. Phase diagrams of hard-core repulsive Yukawa particles. Phys. Rev. E 68, 021407 (2003).

    Article  ADS  Google Scholar 

  28. Hone, D., Alexander, S., Chaikin, P. M. & Pincus, P. The phase diagram of charged colloidal suspensions. J. Chem. Phys. 79, 1474–1479 (1983).

    Article  ADS  Google Scholar 

  29. Robbins, M. O., Kremer, K. & Grest, G. S. Phase diagram and dynamics of Yukawa systems. J. Chem. Phys. 88, 3286–3312 (1988).

    Article  ADS  Google Scholar 

  30. Sciortino, F., Mossa, S., Zaccarelli, E. & Tartaglia, P. Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. Phys. Rev. Lett. 93, 055701 (2004).

    Article  ADS  Google Scholar 

  31. Smallenburg, F., Boon, N., Kater, M., Dijkstra, M. & van Roij, R. Phase diagrams of colloidal spheres with a constant zeta-potential. J. Chem. Phys. 134, 074505 (2011).

    Article  ADS  Google Scholar 

  32. Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. & Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001).

    Article  ADS  Google Scholar 

  33. Xu, S., Zhou, H., Sun, Z. & Xie, J. Formation of an fcc phase through a bcc metastable state in crystallization of charged colloidal particles. Phys. Rev. E 82, 010401 (2010).

    Article  ADS  Google Scholar 

  34. Zhou, H., Xu, S., Sun, Z., Du, X. & Liu, L. Kinetics study of crystallization with the disorder–bcc–fcc phase transition of charged colloidal dispersions. Langmuir 27, 7439–7445 (2011).

    Article  Google Scholar 

  35. Auer, S. & Frenkel, D. Crystallization of weakly charged colloidal spheres: a numerical study. J Phys. Condens. Matter 14, 7667–7680 (2002).

    Article  ADS  Google Scholar 

  36. Desgranges, C. & Delhommelle, J. Polymorph selection during the crystallization of Yukawa systems. J. Chem. Phys. 126, 054501 (2007).

    Article  ADS  Google Scholar 

  37. de Anda, I. R., Statt, A., Turci, F. & Royall, C. P. Low-density crystals in charged colloids: comparison with Yukawa theory. Contrib. Plasma Phys. 55, 172–179 (2015).

    Article  ADS  Google Scholar 

  38. Grier, D. G. & Murray, C. A. The microscopic dynamics of freezing in supercooled colloidal fluids. J. Chem. Phys. 100, 9088–9095 (1994).

    Article  ADS  Google Scholar 

  39. Stipp, A. et al. Heterogeneous nucleation of colloidal melts under the influence of shearing fields. J. Phys. Condens. Matter 16, S3885 (2004).

    Article  Google Scholar 

  40. Wette, P. et al. Competition between heterogeneous and homogeneous nucleation near a flat wall. J. Phys. Condens. Matter 21, 464115 (2009).

    Article  Google Scholar 

  41. Jackson, A. G. Handbook of Crystallography: For Electron Microscopists and Others (Springer Science & Business Media, 2012).

    Google Scholar 

  42. Araki, T. & Tanaka, H. Physical principle for optimizing electrophoretic separation of charged particles. Europhys. Lett. 82, 18004 (2008).

    Article  ADS  Google Scholar 

  43. Iwashita, Y. & Tanaka, H. Surface-assisted monodomain formation of an ordered phase of soft matter via the first-order phase transition. Phys. Rev. Lett. 95, 047801 (2005).

    Article  ADS  Google Scholar 

  44. Antl, L. et al. The preparation of poly(methyl methacrylate) latices in non-aqueous media. Colloid Surface 17, 67–78 (1986).

    Article  Google Scholar 

  45. Bosma, G. et al. Preparation of monodisperse, fluorescent PMMA-latex colloids by dispersion polymerization. J. Colloid Interface Sci. 245, 292–300 (2002).

    Article  ADS  Google Scholar 

  46. Klein, S. M., Manoharan, V. N., Pine, D. J. & Lange, F. F. Preparation of monodisperse PMMA microspheres in nonpolar solvents by dispersion polymerization with a macromonomeric stabilizer. Colloid Polym. Sci. 282, 7–13 (2003).

    Article  Google Scholar 

  47. Leocmach, M. & Tanaka, H. A novel particle tracking method with individual particle size measurement and its application to ordering in glassy hard sphere colloids. Soft Matter 9, 1447–1457 (2013).

    Article  ADS  Google Scholar 

  48. Mickel, W., Kapfer, S. C., Schröder-Turk, G. E. & Mecke, K. Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. J. Chem. Phys. 138, 044501 (2013).

    Article  ADS  Google Scholar 

  49. Lechner, W. & Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).

    Article  ADS  Google Scholar 

  50. ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical calculation of the rate of crystal nucleation in a LennardJones system at moderate undercooling. J. Chem. Phys. 104, 9932–9947 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Tan and L. Xu for fruitful discussions on the assignment of local orientational symmetry and also allowing us to cross-check their data with our analysis methods and theirs. This study was partly supported by Grants-in-Aid for Scientific Research (S) (Grand No. 21224011) and Specially Promoted Research (Grand No. 25000002) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Contributions

H.T. proposed and supervised the study, S.A. performed the experiments and numerical simulations. S.A. and H.T. discussed the results and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Shunto Arai or Hajime Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, S., Tanaka, H. Surface-assisted single-crystal formation of charged colloids. Nature Phys 13, 503–509 (2017). https://doi.org/10.1038/nphys4034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4034

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing