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Unstable fronts and motile structures formed
by microrollers
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Condensation of objects into stable clusters occurs naturally
in equilibrium1 and driven systems2–5. It is commonly held
that potential interactions6, depletion forces7, or sensing8 are
the only mechanisms which can create long-lived compact
structures. Here we show that persistent motile structures
can formspontaneously fromhydrodynamic interactionsalone,
with no sensing or potential interactions. We study this
structure formation in a system of colloidal rollers suspended
and translating above a floor, using both experiments and
large-scale three-dimensional simulations. In this system,
clusters originate from a previously unreported fingering
instability, where fingers pinch o� from an unstable front to
formautonomous ‘critters’,whosesize is selectedby theheight
of the particles above the floor. These critters are a stable state
of the system, move much faster than individual particles, and
quickly respond to a changing drive. With speed and direction
set by a rotating magnetic field, these active structures o�er
interesting possibilities for guided transport, flow generation,
and mixing at the microscale.

We have identified a new instability in one of the most basic
systems of low-Reynolds-number (steady Stokes or overdamped)
flow, a collection of spheres rotating near a wall. This system
has been well studied analytically and numerically9,10, since it is
considered a base model for understanding many microbial and
colloidal flows. The instability visually resembles wet paint dripping
down a wall or individual droplets sliding down a windshield11—
examples of Rayleigh–Taylor instabilities12. However, in those and
other clustering phenomena, what holds things together is surface
tension or other forces deriving from an interaction potential.
Here we use a model system to explore whether hydrodynamic
interactions alone, without particle collisions, attractions or
sense/response redirection, can lead to stable finite clusters.

The experimental system consists of polymer colloids with radius
a= 0.66 µm which have a small permanent magnetic moment
(|m|∼ 5× 10−16 Am−2) from an embedded haematite cube13 (see
schematic in Fig. 1a). Inter-particle magnetic interactions are small
compared to thermal energy (< 0.1kBT ). A rotating magnetic field
(B=B0

[
cos(ωt)x̂+ sin(ωt)ẑ

]
) with magnitude B0 and frequency

f = ω/2π is applied, causing all the particles to rotate about the
y-axis at the same rate ω. The particles rotate synchronously with
the field for ω<ωc, where ωc is the critical frequency above which
the applied magnetic torque is not enough to balance the viscous
torque on the particle (see Supplementary Section I for details of
the rotation mechanism). In all of our experiments, ω < ωc. In
contrast with recent experiments on Quincke rollers14, the rotation
direction is prescribed and does not arise from the systemdynamics.

Hydrodynamics is the dominant inter-particle interaction in this
system, which is distinctly different from many other systems
of rotating magnetic particles, where dynamics is found to be a
strong function of inter-particle magnetic interactions15–18. Many
ferromagnetic particles with a small remnant moment could
produce the same behaviour. Gravity plays an unusual role in
our instability. Rather than a driving force partially compensated
by surface tension or viscosity, as in Rayleigh–Taylor instabilities,
here gravity is completely compensated by thermal motion and
sets the average particle height, h= a+ kBT/mg , where mg is
the particle buoyant weight. The particles are contained in glass
capillary chambers, with a depth ≥ 100 µm. The particles have a
density of 2,000 kgm−3, and are thus suspended at h≈1.0µmabove
the capillary floor, interacting essentially with only one wall.

We model the system as particles near an infinite wall driven
at a constant rotational frequency. The many-body simulations
are done using an accelerated stresslet-free variant of Stokesian
dynamics19 that represents each particle as a single regularized
stokeslet and rotlet singularity. The hydrodynamic interactions
between the particles, and the particles and the wall, are explicitly
modelled (see Methods). This is a minimally resolved, and thus
low-accuracy method. The accuracy of the numerical calculations
can be improved by using a ‘multi-blob’ approach where particles
such as our rotating spheres are represented as a rigid cluster of
regularized stokeslet singularities or ‘blobs’20. The accuracy and
resolution are set by the number of blobs per particle. Improved
resolution comes at the computational expense of a reduction in
the number of particles and the time span that can be simulated.
In Supplementary Fig. 1b we compare a well-resolved sphere
model containing 2,562 blobs, which is used in Fig. 1c,d, with
the minimally resolved model used elsewhere, which produces
qualitatively similar results. The simulations include neither the
effects of thermal motion nor magnetic forces as they are small
compared to viscous forces (see Supplementary Section II). The
particle–wall separation is set by creating a repulsive wall potential.
In addition to the hydrodynamic interactions between particles,
steric repulsion between particles is used for some simulations (for
example, to model the experiment) and dropped for others (for
example, to test the role of pure hydrodynamics).

Hydrodynamic coupling plays a crucial role in the dynamics of
this system. A sphere rotating near a wall about the y-axis will move
in the x-direction (see Fig. 1c). This motion is a result of the unequal
drag force on the top and the bottom of the particle. Its translation
speed v0 is set by the scaled distance to the wall and the rotation
rate10: v0= ωaf (h/a), and vanishes as the height increases—that
is, f (h/a)→ 0 as h→∞. However, as shown in Fig. 1c, v0 is
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Figure 1 | Strong velocity enhancement due to collective e�ects. a, SEM and schematic of the polymer colloids with an embedded magnetic cube,
indicated in red. Scale bar, 1 µm. A rotating magnetic field, B, with angular frequency ω directs particle motion. b, Normalized particle velocity measured in
experiments, v̄= (v−v0)/v0, versus area fraction, φ, at fixed field strength, B0=3 mT, for various frequencies f=ω/2π. Insets show pictures of the system
at the highest and lowest φ. The best linear fit (dashed line) shows a strong dependence of v̄ on φ, v̄=αφ, where α=50±2. c,d, Calculated streamlines
around a rotating particle (f= 10 Hz, h=0.98µm) in the plane perpendicular (c) and parallel (d) to the rotation direction. Flow velocity is normalized by
single particle translation velocity v0 and its magnitude is shown by the colour bar.

orders of magnitude slower than the fluid velocity at the particle’s
surface (ωa). The velocity field around a particle decays slowly (as
1/r 2) in the xy-plane, where r is the distance to the particle centre.
Thus, even at moderate area fractions, φ, particle motion is mainly
a result of being advected in the flow of neighbouring particles.
This collective effect can be described by a density-dependent mean
velocity, v̄≡ (v− v0)/v0= αφ, where α is found to be 50± 2 in
our experimental system (see Fig. 1b). Putting v≈ αφv0 into the
continuity equation,

∂φ

∂t
+
∂(vφ)
∂x
=
∂φ

∂t
+αv0

∂
(
φ2
)

∂x
=0 (1)

results in the inviscid Burger’s equation, which is well known to lead
to the development of a shock front21. Although the development
of a shock is a simple consequence of having a density-dependent
velocity, to our knowledge, this feature has been observed only in
low-density flowing emulsion systems22,23, and not other colloidal
roller systems14. As in Burger’s solution, we need a leading edge
density gradient to observe the shock.

The propagating shock front quickly becomes unstable in the
direction transverse to propagation, leading to the appearance of
density fluctuations which continue to grow as fingers (see Fig. 2a
and Supplementary Movies 1 and 2). This fingering instability does
not occur in a planar Burger’s shock24. Both the experiments and
simulations show a qualitatively similar evolution of the shock,

the shock instability, and the fingering, at the same relative times.
Despite its deceptively similar appearance, this fingering instability
is distinct from other previously reported viscous11, granular2,25 and
colloidal instabilities26–28. In a Rayleigh–Taylor-like instability, the
fingering dynamics is controlled by a balance of viscous damping
and a body-force driving term (like gravity). In contrast, the
instability wavelength in this system is independent of both viscosity
and driving torque (that is, rotation rate); see Fig. 2b,c. We define
the instability wavelength, λmax, as the wavelength associated with
the fastest growing normal mode, as is typical for a linear instability
(see Supplementary Section III for details). The control parameter
for this instability, in both the experiments and the simulations, is h,
as illustrated in Fig. 2d,e. As shown in that figure, when the particle–
wall distance increases, the instability wavelength increases linearly.
The numerical results are obtained by confining the particles to a
plane parallel to the wall at a given height h (see Supplementary
Movie 3). As discussed later in the text, the same dynamics are
observed in this configuration as in the fully three-dimensional (3D)
simulations. In the experiments, the height is adjusted by changing
the solvent density, and hence the colloids’ buoyant weight mg .
Although we change the particle–wall separation in quite different
ways in the experiments and simulations, in both cases h is the key
control parameter for λmax.

Due to the increased density in the shock region, the fingertips
are much denser and, due to collective effects, that is, v̄=αφ, move
much faster than the rest of the suspension. In the simulations,
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Figure 2 | Fingering instability. a, Instability in the experiment (above) and simulation (below) at the same relative points in time (in the xy-plane). Labels
indicate scaled time (arbitrary units), and all images are 0.55 mm tall. b, Experimental data of instability wavelength, λmax versus f, for three di�erent fluid
viscosities (di�erent symbols), dashed line indicates mean λmax. c, Experimental images corresponding to (i) η= 1 mPa s and (ii) η= 10 mPa s. Scale bar,
100 µm. d, Experimental and simulation data of λmax versus h, dashed line indicates best linear fit to the simulation data. e, Experimental images for
gravitational heights (α) h= 1.0µm and (β) h=2.5µm. Scale bar, 100 µm. (All error bars represent standard error of the mean.)
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Figure 3 | Self-sustained critters. a, Time evolution of the instability. Colour bar indicates translational velocity in radii/s and the camera position changes
dynamically. t=0 s: 8,000 rollers are initially randomly distributed on a strip. t=9.25 s: a compact front appears and starts to destabilize. t= 14.5 s: the
fingertips start to detach from the front and form critters. t≥78 s: the critters reach a stable steady state in which they translate autonomously at a
constant speed. b, Time evolution of normalized translational velocity of a critter, vc/v0, where v0 is the velocity of a roller at the same centre of mass
height. Inset: side view of the critter at t=78 s, as indicated by the arrows, particles rotate about the centre of mass of the critter. c, Circular periodic
trajectory of five critters rotating anticlockwise in response to slowly changing the axis of rotation. The period of the trajectory is T=40 s and a frame is
shown every T/4.

if the particles are maintained high enough away from the wall,
the fingertips break off to form self-sustained, compact clusters
made of hundreds of particles, which we term ‘critters’ (see Fig. 3a
and Supplementary Movie 4). These critters rotate around their
centre of mass and translate with a speed 15,000 times faster
than a single roller would at the same centre of mass height
(Fig. 3b inset). Critters form a natural stable state of the system:
they move at a constant speed, do not lose particles, and are not

observed to dissolve (see Fig. 3b and Supplementary Movie 4). We
further explore their stability by changing the direction (but not
the magnitude) of ω periodically in time. As shown in Fig. 3c and
Supplementary Movie 5, the critters follow the prescribed circular
trajectory. Somewhat similar structures to the critters were obtained
experimentally when h was increased (Fig. 2e and Supplementary
Movie 6), although in the experiment critters continually lost some
particles as they moved. In the simulations, the compact critters are
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a b c

Figure 4 | Instability and clustering controlled by hydrodynamics. Simulations with rollers restricted to a plane z=3.94 µm, at time t=74 s. a, Simulations
include both steric interactions and finite size e�ects. b, Flow field in the frame moving with a cluster. Blue dots indicate roller positions, the dashed cyan
line circles the recirculation zone where motion is self-sustained, and the cyan dots show the stagnation points. c, Purely hydrodynamic simulation of rotlet
singularities with no steric repulsion reproduce the instability.

extremely robust, suggesting they may be an attractor in the system
dynamics—similar critters appear regardless of the initial conditions
(see Supplementary Movie 7).

The velocity field in Fig. 1d suggests that the transverse instability
of the shock originates from the lateral hydrodynamic attraction
and repulsion in the xy-plane; this lateral flow shows the same
qualitative features for a rigid sphere and for a point rotlet above
a no-slip boundary9. To test the assumption that this is a planar
instability, we simplify the system in our simulations by restricting
the rollers to a fixed plane above the wall. This simplified system
reproduces the instability: the shock forms, the transverse instability
develops, and autonomous clusters with selected size detach and
translate much faster than individual particles, as shown in Fig. 4a.
We further remove all non-hydrodynamic effects and simplify the
system to its bare minimum by simulating instead a collection of
point rotlet singularities without any steric repulsion. Figure 4c and
Supplementary Movie 8 show that both the fingering instability
and clustering are reproduced with only this one ingredient:
hydrodynamic interactions in the vicinity of a no-slip boundary.

A closer look at the flow field around a cluster in the frame
moving with its centre of mass shows a well-defined recirculation
zone whose size matches the cluster size, as shown in Fig. 4b. The
closed streamlines in this flow field are responsible for the self-
sustained and compact clusters. As seen in studies of sedimenting
particle clouds29, the chaotic nature of the flow inside a cluster
can lead to the loss of particles. However, in our 3D simulations,
additional circulation in the xz-plane prevents particle loss; the
critters are stabilized by the closed streamlines. Critters smaller than
the size of the recirculation zone, which is proportional to the height
above the wall, can form and remain stable, while larger ones break
up by shedding excess particles.

Clustering is seen in many other low-Reynolds-number systems,
from sedimentation to active colloidal particles. What is notable
about the critters that emerge from this instability is that they
are a persistent state which can be produced from hydrodynamic
interactions. Other kinds of hydrodynamic clusters, such as those
seen in sedimentation30,31, are always transient and not long-
lived structures. Almost all active matter systems exhibit some
kind of clustering instability3,4, but it is usually a consequence of
particle–particle interactions, either directly through an attractive
potential, sensing, or via self-trapping, which is a consequence
of a repulsive particle potential. Here we have demonstrated that

the same instability observed in the experiments is preserved in
the simulations, even when all interactions except hydrodynamics
are removed.

In this study, we isolated the role of hydrodynamics. We note
that this instability is generic and should be found in any system of
particles rotating parallel to a floor, provided that hydrodynamics
is the dominant particle–particle interaction. The addition of
particle–particle potentials can strongly modify the instability
structure and dynamics. For example, varying the Mason number
(relative strength of hydrodynamic and magnetic interactions)
completely changes the dynamics of the system (see Supplementary
Section II and Supplementary Movie 9). The structures and flow
patterns formed in our model system suggest a number of possible
applications. Collections of rollers create strong advective flows,
and their motion and direction can be externally powered and
controlled. As shown in Supplementary Section IV, we have found,
both experimentally and in simulations, a number of promising
ways to transport passive particles by microrollers in either
homogeneous suspensions, fingers, or critters.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.

Received 22 July 2016; accepted 1 November 2016;
published online 5 December 2016; corrected online 10March 2017

References
1. Anderson, V. J. & Lekkerkerker, H. N. Insights into phase transition kinetics

from colloid science. Nature 416, 811–815 (2002).
2. Aranson, I. S. & Tsimring, L. S. Patterns and collective behavior in granular

media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006).
3. Marchetti, M. et al . Hydrodynamics of soft active matter. Rev. Mod. Phys. 85,

1143–1189 (2013).
4. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living

crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).
5. Bialké, J., Speck, T. & Löwen, H. Active colloidal suspensions: clustering and

phase behavior. J. Non-Cryst. Solids 407, 367–375 (2015).
6. Lu, P. J. & Weitz, D. A. Colloidal particles: crystals, glasses, and gels. Annu. Rev.

Condens. Matter Phys. 4, 217–233 (2013).
7. Schwarz-Linek, J. et al . Phase separation and rotor self-assembly in active

particle suspensions. Proc. Natl Acad. Sci. USA 109, 4052–4057 (2012).

378

© Macmillan Publishers Limited . All rights reserved

NATURE PHYSICS | VOL 13 | APRIL 2017 | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys3970
http://dx.doi.org/10.1038/nphys3970
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS3970 LETTERS
8. Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).
9. Blake, J. & Chwang, A. Fundamental singularities of viscous flow. J. Eng. Math.

8, 23–29 (1974).
10. Lee, S. & Leal, L. Motion of a sphere in the presence of a plane interface. Part 2.

an exact solution in bipolar co-ordinates. J. Fluid Mech. 98, 193–224 (1980).
11. Huppert, H. E. Flow and instability of a viscous current down a slope. Nature

300, 427–429 (1982).
12. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Oxford, 1961).
13. Sacanna, S., Rossi, L. & Pine, D. J. Magnetic click colloidal assembly. J. Am.

Chem. Soc. 134, 6112–6115 (2012).
14. Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D.

Emergence of macroscopic directed motion in populations of motile colloids.
Nature 503, 95–98 (2013).

15. Sing, C. E., Schmid, L., Schneider, M. F., Franke, T. & Alexander-Katz, A.
Controlled surface-induced flows from the motion of self-assembled colloidal
walkers. Proc. Natl Acad. Sci. USA 107, 535–540 (2010).

16. Martinez-Pedrero, F., Ortiz-Ambriz, A., Pagonabarraga, I. & Tierno, P.
Colloidal microworms propelling via a cooperative hydrodynamic conveyor
belt. Phys. Rev. Lett. 115, 138301 (2015).

17. Grzybowski, B. A., Stone, H. A. &Whitesides, G. M. Dynamic self-assembly of
magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature
405, 1033–1036 (2000).

18. Snezhko, A. Complex collective dynamics of active torque-driven colloids at
interfaces. Curr. Opin. Colloid Interface Sci. 21, 65–75 (2016).

19. Swan, J. W. & Brady, J. F. Simulation of hydrodynamically interacting particles
near a no-slip boundary. Phys. Fluids 19, 113306 (2007).

20. Usabiaga, F. B. et al . Hydrodynamics of suspensions of passive and active rigid
particles: a rigid multiblob approach. Preprint at
http://arxiv.org/abs/1602.02170 (2016).

21. Burgers, J. The Nonlinear Diffusion Equation: Asymptotic Solutions and
Statistical Problems. Lecture series (Springer, 1974).

22. Beatus, T., Tlusty, T. & Bar-Ziv, R. Burgers shock waves and sound in a 2D
microfluidic droplets ensemble. Phys. Rev. Lett. 103, 114502 (2009).

23. Desreumaux, N., Caussin, J.-B., Jeanneret, R., Lauga, E. & Bartolo, D.
Hydrodynamic fluctuations in confined particle-laden fluids. Phys. Rev. Lett.
111, 118301 (2013).

24. Goodman, J. & Miller, J. R. Long-time behavior of scalar viscous shock fronts
in two dimensions. J. Dyn. Differ. Equ. 11, 255–277 (1999).

25. Pouliquen, O., Delour, J. & Savage, S. Fingering in granular flows. Nature 386,
816–817 (1997).

26. Pan, T., Joseph, D. & Glowinski, R. Modelling Rayleigh–Taylor instability of a
sedimenting suspension of several thousand circular particles in a direct
numerical simulation. J. Fluid Mech. 434, 23–37 (2001).

27. Lin, T., Rubinstein, S. M., Korchev, A. & Weitz, D. A. Pattern formation of
charged particles in an electric field. Langmuir 30, 12119–12123 (2014).

28. Wysocki, A. et al . Direct observation of hydrodynamic instabilities in a driven
non-uniform colloidal dispersion. Soft Matter 5, 1340–1344 (2009).

29. Metzger, B., Nicolas, M. & Guazzelli, E. Falling clouds of particles in viscous
fluids. J. Fluid Mech. 580, 283–301 (2007).

30. Löwen, H. Particle-resolved instabilities in colloidal dispersions. Soft Matter 6,
3133–3142 (2010).

31. Guazzelli, E. & Hinch, J. Fluctuations and instability in sedimentation. Annu.
Rev. Fluid Mech. 43, 97–116 (2011).

Acknowledgements
This work was supported primarily by the Gordon and Betty Moore Foundation through
Grant GBMF3849 and the Materials Research Science and Engineering Center (MRSEC)
program of the National Science Foundation under Award Number DMR-1420073.
A. Donev and B. Delmotte were supported in part by the National Science Foundation
under award DMS-1418706. P. Chaikin was partially supported by NASA under Grant
Number NNX13AR67G. We gratefully acknowledge the support of the NVIDIA
Corporation with the donation of GPU hardware for performing some of the simulations
reported here.

Author contributions
M.D. performed the experiments. B.D. performed the simulations. M.Y. and S.S.
synthesized the colloidal particles. M.D., B.D., A.D. and P.C. conceived the project,
analysed the results and wrote the paper.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to M.D. or B.D.

Competing financial interests
The authors declare no competing financial interests.

NATURE PHYSICS | VOL 13 | APRIL 2017 | www.nature.com/naturephysics

© Macmillan Publishers Limited . All rights reserved

379

http://dx.doi.org/10.1038/nphys3970
http://arxiv.org/abs/1602.02170
http://dx.doi.org/10.1038/nphys3970
http://www.nature.com/reprints
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS3970

Methods
Experiments. The colloidal particles are TPM (3-methacryloxypropyl
trimethoxysilane) spheres (a=0.66µm) with haematite cubes embedded into them
(see Sacanna et al.13 for details of the synthesis). Haematite is a canted
anti-ferromagnet, thus the particles possess a small permanent moment,
|m|∼5×10−16 Am−2, which can be oriented in an applied magnetic field. The
particles are dispersed in either water or aqueous glycerol solutions (dynamic
viscosity η=1mPa s, η=4mPa s, or η = 10mPa s). To increase buoyancy,
additional samples are created with particles dispersed in a 410mM sodium
polytungstate solution, with a small amount of tetramethylammonium hydroxide
(TMAH) added as an additional stabilizer (1.2% v/v).

In all cases, the particles are contained in glass capillary tubes of depth 100 µm
or greater (VitroCom VitroTubes), which are sealed with ultraviolet epoxy
(Norland NOA63). To create the initial density gradient in particle concentration,
the chambers are tilted so that particles gather to one side, then are laid flat to
ensure a monolayer is formed as the initial condition. Distance of this initial
gradient to the vertical chamber wall does not affect the instability wavelength.

The rotating magnetic field is created using custom triaxial coils. A bipolar
current supply (KEPCO BOP 50-2M) is used to apply the current to the coils and
create a rotating magnetic field. The waveforms for the rotating field are generated
using a DAQ (MCC USB-3101FS) controlled via Matlab. The field generated by the
coils is measured with a Hall sensor (Ametes MFS-3A). For all experiments
described in this work, the magnitude of the field is 2.94mT, and the frequency is
varied from 0.2–25Hz.

All observations are made using a Nikon Ti-U inverted microscope. Roller
velocity is calculated in two ways. At low area fractions (φ<0.1), the velocity is
computed using the instantaneous velocity calculated from particle tracking32. The
velocity was computed for small segments of the individual particle tracks, and the
results were then binned to calculate the mean roller velocity. At high area
fractions, individual particle velocities cannot be measured, and a custom Python
code was used to process the images and perform particle image velocimetry (PIV)
analysis. The roller velocity was then taken to be the mean suspension velocity
computed from the PIV analysis. Using a range of area fractions where both
particle tracking and PIV could be used, φ=0.10−0.20, we validated that the
mean suspension velocity matched the individual particle velocity—that is, when
hydrodynamic collective effects are predominant, the mean suspension velocity is
equivalent to the individual particle velocity.

Simulations. The flow fields around one roller shown in Fig. 1 are obtained by
using the rigid multi-blob method developed by Usabiaga and colleagues20. The
surface of the roller is discretized with 2,562 blobs which are rigidly connected with
constraint forces. Pairwise hydrodynamic interactions between blobs are modelled
with the Rotne–Prager–Blake tensor with wall corrections19.

The multi-particle simulations are performed using the Stokesian Dynamics
method developed by Swan and Brady19, omitting stresslets and thermal
fluctuations (Brownian motion). In brief, the hydrodynamic response is computed
by replacing each sphere with a regularized singularity (stokeslet and rotlet) and
accounting for the hydrodynamic interaction with the wall in an approximate but
self-consistent way by applying Rotne–Prager corrections to the Blake image
construction9. This modelling includes only leading-order corrections for the finite
size of the particles to limit the computational cost required to simulate large
numbers (O(104)) of particles. Even though this low-resolution model
overestimates the particle mobility, it remains physically consistent, and its
accuracy can be controlled and quantified. A better-resolved multi-blob model20

would increase the hydrodynamic accuracy but incur a higher computational cost.
We compare both the minimally resolved model19 and the well-resolved multi-blob
model20 with experiments in Supplementary Section I.

As in the experiments, the rotation rate of the particles is prescribed. This is
ensured by applying the appropriate torquesT obtained by solving the following
resistance problem19

M rrT=�−M rtF (2)

whereM rr is the mobility matrix coupling the prescribed particle rotations � to the
unknown particle torques T.M rt is the mobility matrix coupling � to the known
external forces F acting on the particles, which are a combination of
particle–particle and particle–wall repulsive forces and gravity. Once the torques
are obtained, the translational velocities V are found with the mobility relation

V=M trT+M ttF (3)

whereM tr
= (M rt )T couples V to T andM tt couples V to F. When the particles are

restricted to a plane at fixed height z=h, forces and motion in the z-direction are
discarded. Particle trajectories are integrated with the two-step
Adams–Bashforth–Moulton predictor–corrector scheme. The time step1t is
chosen so that a particle does not travel more than 5% of its size per time step:
v1t<0.05a. Typically,1t=0.005 s in most of the simulations. Mobility-vector
products and steric interactions are computed with PyCUDA on an Nvidia K40
GPU. The typical simulation time is 7 h for 20,000 time iterations with O(104)
particles.

When included, steric interactions between the particles are modelled with a
pairwise soft-core repulsive potential Upart of Yukawa type,

Upart(r)=Sp
a
r
exp

(
−

r
Dp

)

where r is the centre-to-centre distance between particles, Sp is the strength of the
potential (Sp=2.43×108mga) and the interaction range is Dp=0.1a. Since the
simulations do not include Brownian motion, to balance gravity forces and set the
equilibrium height of the particles we use a repulsive potential from the wall

Uwall(z)=Sw
a

z−a
exp
(
−

z−a
Dw

)
where z is height of the particle centre. The strength Sw and the range Dw are
changed between the simulations to investigate the effect of the particle height on
the instability: Sw=0.05–25.1mga and Dw=0.1a–7a. The total force on the
particles F is given by the gradient of the combination of the repulsive potentials,
Upart and Uwall, and the gravitational potentialmgz , wherem=1.27×10−15 kg is
the excess mass of a roller.

Data availability. The data that supports the plots within this paper and other
findings of this study are available from the corresponding author on request.
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