Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quintet multiexciton dynamics in singlet fission

Abstract

Singlet fission, in which two triplet excitons are generated from a single absorbed photon, is a key third-generation solar cell concept. Conservation of angular momentum requires that singlet fission populates correlated multiexciton states, which can subsequently dissociate to generate free triplets. However, little is known about electronic and spin correlations in these systems since, due to its typically short lifetime, the multiexciton state is challenging to isolate and study. Here, we use bridged pentacene dimers, which undergo intramolecular singlet fission while isolated in solution and in solid matrices, as a unimolecular model system that can trap long-lived multiexciton states. We combine transient absorption and time-resolved electron spin resonance spectroscopies to show that spin correlations in the multiexciton state persist for hundreds of nanoseconds. Furthermore, we confirm long-standing predictions that singlet fission produces triplet pair states of quintet character. We compare two different pentacene–bridge–pentacene chromophores, systematically tuning the coupling between the pentacenes to understand how differences in molecular structure affect the population and dissociation of multiexciton quintet states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structure and Jablonski diagram of the singlet fission system.
Figure 2: Identifying singlet fission dynamics via transient absorption.
Figure 3: Identifying quintet and triplet spin states via time-resolved electron spin resonance.
Figure 4: Nutation of the (TT) pair and dissociated triplet transitions in BP3.
Figure 5: Singlet fission generates weakly coupled triplets in BP2.
Figure 6: Temperature-dependent dissociation kinetics.

Similar content being viewed by others

References

  1. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    Article  Google Scholar 

  2. Tayebjee, M. J. Y., McCamey, D. R. & Schmidt, T. W. Beyond Shockley–Queisser: molecular approaches to high-efficiency photovoltaics. J. Phys. Chem. Lett. 6, 2367–2378 (2015).

    Google Scholar 

  3. Smith, M. B. & Michl, J. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64, 361–386 (2013).

    Article  ADS  Google Scholar 

  4. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 74510 (2006).

    Google Scholar 

  5. Tomkiewicz, Y., Groff, R. P. & Avakian, P. Spectroscopic approach to energetics of exciton fission and fusion in tetracene crystals. J. Chem. Phys. 54, 4504–4507 (1971).

    ADS  Google Scholar 

  6. Tayebjee, M. J. Y., Clady, R. G. C. R. & Schmidt, T. W. The exciton dynamics in tetracene thin films. Phys. Chem. Chem. Phys. 15, 14797–14805 (2013).

    Google Scholar 

  7. Burdett, J. J., Gosztola, D. & Bardeen, C. J. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission. J. Chem. Phys. 135, 214508 (2011).

    ADS  Google Scholar 

  8. Burdett, J. J., Muller, A. M., Gosztola, D. & Bardeen, C. J. Excited state dynamics in solid and monomeric tetracene: the roles of superradiance and exciton fission. J. Chem. Phys. 133, 144506 (2010).

    ADS  Google Scholar 

  9. Wilson, M. W. B. et al. Temperature-independent singlet exciton fission in tetracene. J. Am. Chem. Soc. 135, 16680–16688 (2013).

    Google Scholar 

  10. Pope, M., Geacintov, N. E. & Vogel, F. Singlet exciton fission and triplet–triplet exciton fusion in crystalline tetracene. Mol. Cryst. Liq. Cryst. 6, 83–104 (1969).

    Google Scholar 

  11. Geacintov, N. E., Pope, M. & Vogel, F. Effect of magnetic field on fluorescence of tetracene crystals—exciton fission. Phys. Rev. Lett. 22, 593–596 (1969).

    ADS  Google Scholar 

  12. Piland, G. B. & Bardeen, C. J. How morphology affects singlet fission in crystalline tetracene. J. Phys. Chem. Lett. 6, 1841–1846 (2015).

    Google Scholar 

  13. Arias, D. H., Ryerson, J. L., Cook, J. D., Damrauer, N. H. & Johnson, J. C. Polymorphism influences singlet fission rates in tetracene thin films. Chem. Sci. 7, 1185–1191 (2016).

    Google Scholar 

  14. Pensack, R. D. et al. Exciton delocalization drives rapid singlet fission in nanoparticles of acene derivatives. J. Am. Chem. Soc. 137, 6790–6803 (2015).

    Google Scholar 

  15. Tayebjee, M. J. Y. et al. Morphological evolution and singlet fission in aqueous suspensions of TIPS-pentacene nanoparticles. J. Phys. Chem. C 120, 157–165 (2016).

    Google Scholar 

  16. Walker, B. J., Musser, A. J., Beljonne, D. & Friend, R. H. Singlet exciton fission in solution. Nat. Chem. 5, 1019–1024 (2013).

    Google Scholar 

  17. Stern, H. L. et al. Identification of a triplet pair intermediate in singlet exciton fission in solution. Proc. Natl Acad. Sci. USA 112, 7656–7661 (2015).

    ADS  Google Scholar 

  18. Burdett, J. J. & Bardeen, C. J. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134, 8597–8607 (2012).

    Google Scholar 

  19. Musser, A. J. et al. Activated singlet exciton fission in a semiconducting polymer. J. Am. Chem. Soc. 135, 12747–12754 (2013).

    Google Scholar 

  20. Busby, E. et al. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor–acceptor organic materials. Nat. Mater. 14, 426–433 (2015).

    ADS  Google Scholar 

  21. Akdag, A. et al. Covalent dimers of 1,3-Diphenylisobenzofuran for singlet fission: synthesis and electrochemistry. J. Org. Chem. 80, 80–89 (2015).

    Google Scholar 

  22. Greyson, E. C. et al. Singlet exciton fission for solar cell applications: energy aspects of interchromophore coupling. J. Phys. Chem. B 114, 14223–14232 (2010).

    Google Scholar 

  23. Low, J. Z., Sanders, S. N. & Campos, L. M. Correlating structure and function in organic electronics: from single molecule transport to singlet fission. Chem. Mater. 27, 5453–5463 (2015).

    Google Scholar 

  24. Müller, A. M., Avlasevich, Y. S., Müllen, K. & Bardeen, C. J. Evidence for exciton fission and fusion in a covalently linked tetracene dimer. Chem. Phys. Lett. 421, 518–522 (2006).

    ADS  Google Scholar 

  25. Müller, A. M., Avlasevich, Y. S., Schoeller, W. W., Müllen, K. & Bardeen, C. J. Exciton fission and fusion in bis(tetracene) molecules with different covalent linker structures. J. Am. Chem. Soc. 129, 14240–14250 (2007).

    Google Scholar 

  26. Zeng, T. & Goel, P. Design of small intramolecular singlet fission chromophores: an azaborine candidate and general small size effects. J. Phys. Chem. Lett. 7, 1351–1358 (2016).

    Google Scholar 

  27. Korovina, N. V. et al. Singlet fission in a covalently linked cofacial alkynyltetracene dimer. J. Am. Chem. Soc. 138, 617–627 (2016).

    Google Scholar 

  28. Lukman, S. et al. Tuneable singlet exciton fission and triplet–triplet annihilation in an orthogonal pentacene dimer. Adv. Funct. Mater. 25, 5452–5461 (2015).

    Google Scholar 

  29. Sakuma, T. et al. Long-lived triplet excited states of bent-shaped pentacene dimers by intramolecular singlet fission. J. Phys. Chem. A 120, 1867–1875 (2016).

    Google Scholar 

  30. Sanders, S. N. et al. Quantitative intramolecular singlet fission in bipentacenes. J. Am. Chem. Soc. 137, 8965–8972 (2015).

    Google Scholar 

  31. Zirzlmeier, J. et al. Singlet fission in pentacene dimers. Proc. Natl Acad. Sci. USA 112, 5325–5330 (2015).

    ADS  Google Scholar 

  32. Sanders, S. N. et al. Intramolecular singlet fission in oligoacene heterodimers. Angew. Chem. 128, 3434–3438 (2016).

    Google Scholar 

  33. Rao, A., Wilson, M. W. B., Albert-Seifried, S., Di Pietro, R. & Friend, R. H. Photophysics of pentacene thin films: the role of exciton fission and heating effects. Phys. Rev. B 84, 195411 (2011).

    ADS  Google Scholar 

  34. Wilson, M. W. B. et al. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133, 11830–11833 (2011).

    Google Scholar 

  35. Merrifield, R. E. Magnetic effects on triplet exciton interactions. Pure Appl. Chem. 27, 481–498 (1971).

    Google Scholar 

  36. Bayliss, S. L. et al. Geminate and nongeminate recombination of triplet excitons formed by singlet fission. Phys. Rev. Lett. 112, 238701 (2014).

    ADS  Google Scholar 

  37. Piland, G. B., Burdett, J. J., Kurunthu, D. & Bardeen, C. J. Magnetic field effects on singlet fission and fluorescence decay dynamics in amorphous rubrene. J. Phys. Chem. C 117, 1224–1236 (2013).

    Google Scholar 

  38. Bayliss, S. L. et al. Localization length scales of triplet excitons in singlet fission materials. Phys. Rev. B 92, 115432 (2015).

    ADS  Google Scholar 

  39. Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science 340, 334–337 (2013).

    ADS  Google Scholar 

  40. Jadhav, P. J., Mohanty, A., Sussman, J., Lee, J. & Baldo, M. A. Singlet exciton fission in nanostructured organic solar cells. Nano Lett. 11, 1495–1498 (2011).

    ADS  Google Scholar 

  41. Thompson, N. J., Hontz, E., Chang, W., Van Voorhis, T. & Baldo, M. Magnetic field dependence of singlet fission in solutions of diphenyl tetracene. Phil. Trans. R. Soc. A 373, 20140323 (2015).

    ADS  Google Scholar 

  42. Fünfschilling, J., Zschokkegranacher, I., Canonica, S. & Wild, U. P. Quantum beats in the fluorescence decay of tetracene crystals. Helv. Phys. Acta 58, 347–354 (1985).

    Google Scholar 

  43. Agostini, G., Corvaja, C., Giacometti, G. & Pasimeni, L. Optical, zero-field ODMR and EPR studies of the triplet-states from singlet fission in biphenyl-TCNQ and Biphenyl-Tetrafluoro-TCNQ charge-transfer crystals. Chem. Phys. 173, 177–186 (1993).

    Google Scholar 

  44. Yarmus, L., Rosenthal, J. & Chopp, M. EPR of triplet excitons in tetracene crystals—spin polarization and role of singlet exction fission. Chem. Phys. Lett. 16, 477–481 (1972).

    ADS  Google Scholar 

  45. Swenberg, C. E., van Metter, R. & Ratner, M. Comments on exciton fission and electron spin resonance in tetracene single crystals. Chem. Phys. Lett. 16, 482–485 (1972).

    ADS  Google Scholar 

  46. Sanders, S. N. et al. Exciton correlations in intramolecular singlet fission. J. Am. Chem. Soc. 138, 7289–7297 (2016).

    Google Scholar 

  47. Jeschke, G. & Spiess, H.-W. in Novel NMR and EPR Techniques (eds Dolinšek, J., Vilfan, M. & Žumer, S.) 21–63 (Springer, 2006).

    Google Scholar 

  48. Bencini, A. & Gatteschi, D. EPR of Exchange Coupled Systems (Springer, 1990).

    Google Scholar 

  49. Swenberg, C. E. & Geacintov, N. E. in Organic Molecular Photophysics Vol. 1 (ed. Birks, J. B.) Ch. 10 (Wiley-Interscience, 1973).

    Google Scholar 

  50. Snaathorst, D. & Keijzers, C. P. Triplet–triplet interactions between dimers of a copper maleonitriledithiolate complex. Mol. Phys. 51, 509–524 (1984).

    ADS  Google Scholar 

  51. Benk, H. & Sixl, H. Theory of two coupled triplet states. Mol. Phys. 42, 779–801 (1981).

    ADS  Google Scholar 

  52. Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, 2001).

    Google Scholar 

  53. Van Strien, A. J. & Schmidt, J. An EPR study of the triplet state of pentacene by electron spin-echo techniques and laser flash excitation. Chem. Phys. Lett. 70, 513–517 (1980).

    ADS  Google Scholar 

  54. Kumarasamy, E. et al. Properties of poly- and oligopentacenes synthesized from modular building blocks. Macromolecules 49, 1279–1285 (2016).

    ADS  Google Scholar 

  55. Zeng, T., Hoffmann, R. & Ananth, N. The low-lying electronic states of pentacene and their roles in singlet fission. J. Am. Chem. Soc. 136, 5755–5764 (2014).

    Google Scholar 

  56. Bakulin, A. A. et al. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nat. Chem. 8, 16–23 (2016).

    Google Scholar 

  57. Musser, A. J. et al. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015).

    Google Scholar 

  58. Fuemmeler, E. G. et al. A direct mechanism of ultrafast intramolecular singlet fission in pentacene dimers. ACS Cent. Sci. 2, 316–324 (2016).

    Google Scholar 

  59. Feng, X. & Krylov, A. I. On couplings and excimers: lessons from studies of singlet fission in covalently linked tetracene dimers. Phys. Chem. Chem. Phys. 18, 7751–7761 (2016).

    Google Scholar 

  60. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (DP160103008 and LE130100146). M.J.Y.T. acknowledges receipt of an ARENA Fellowship and a Travel Award from the CASS Foundation. M.J.Y.T. thanks J. Behrends, R. Bittl and the Berlin Joint EPR Lab (BeJEL) for useful discussions. D.R.M. acknowledges an ARC Future Fellowship (FT130100214). L.M.C. acknowledges support from the Office of Naval Research Young Investigator Program (Award N00014-15-1-2532) and Cottrell Scholar Award. S.N.S. thanks the NSF for GRFP (DGE 11-44155). This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. We thank J. Guse for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed and performed by M.J.Y.T., S.N.S., M.Y.S. and D.R.M. Materials were designed and synthesized by S.N.S., E.K. and L.M.C. Data were analysed by M.J.Y.T., S.N.S., M.Y.S. and D.R.M., and all authors contributed to the discussion. M.J.Y.T., S.N.S., M.Y.S. and D.R.M. wrote the manuscript, with contributions from all authors.

Corresponding authors

Correspondence to Murad J. Y. Tayebjee or Dane R. McCamey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayebjee, M., Sanders, S., Kumarasamy, E. et al. Quintet multiexciton dynamics in singlet fission. Nature Phys 13, 182–188 (2017). https://doi.org/10.1038/nphys3909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing