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Quantum phase transitions with parity-symmetry
breaking and hysteresis
A. Trenkwalder1, G. Spagnolli2, G. Semeghini2, S. Coop2,3, M. Landini1, P. Castilho1,4, L. Pezzè1,2,5,
G. Modugno2, M. Inguscio1,2, A. Smerzi1,2,5 and M. Fattori1,2*
Symmetry-breaking quantum phase transitions play a key role
in several condensed matter, cosmology and nuclear physics
theoretical models1–3. Its observation in real systems is often
hampered by finite temperatures and limited control of the
system parameters. In this work we report, for the first
time, the experimental observation of the full quantum phase
diagram across a transition where the spatial parity symmetry
is broken. Our system consists of an ultracold gas with
tunable attractive interactions trapped in a spatially symmetric
double-well potential. At a critical value of the interaction
strength, we observe a continuous quantum phase transition
where the gas spontaneously localizes in one well or the
other, thus breaking the underlying symmetry of the system.
Furthermore, we show the robustness of the asymmetric
state against controlled energy mismatch between the two
wells. This is the result of hysteresis associated with an
additional discontinuous quantum phase transition that we
fully characterize. Our results pave the way to the study
of quantum critical phenomena at finite temperature4, the
investigation of macroscopic quantum tunnelling of the order
parameter in the hysteretic regime and the production of
strongly quantum entangled states at critical points5.

Parity is a fundamental discrete symmetry of nature6 conserved
by gravitational, electromagnetic and strong interactions7. It states
the invariance of a physical phenomenon under mirror reflection.
Our world is pervaded by robust discrete asymmetries, spanning
from the imbalance of matter and antimatter to the homo-chirality
of DNA of all living organisms8. Their origin and stability is
a subject of active debate. Quantum mechanics predicts that
asymmetric states can be the result of phase transitions occurring
at zero temperature, named in the literature as quantum phase
transitions (QPTs)1,4. The breaking of a discrete symmetry via a
QPT provides also asymmetric states that are particularly robust
against external perturbations. Indeed, the order parameter of a
continuous-symmetry-breaking QPT can freely (with no energy
cost) wander along the valley of a ‘mexican hat’ Ginzburg–Landau
potential (GLP) by coupling with gapless Goldstone modes9. In
contrast, the order parameter of discrete-symmetry-breaking QPTs
is governed by a one-dimensional double-well GLP10. The reduced
dimensionality suppresses Goldstone excitations, and the order
parameter can remain trapped at the bottom of one of the two wells.
This provides a robust hysteresis associated with a first-order QPT.

Evidence of parity-symmetry breaking has been reported in
relativistic heavy-ions collisions11 and in engineered photonic

crystal fibres12. Observation of parity-symmetry breaking in a QPT
has been reported for neutral atoms coupled to a high-finesse optical
cavity13. However, this is a strongly dissipative system, with no direct
access to the symmetry-breaking mechanism necessary to study the
robustness of asymmetric states. In addition, previous theoretical
studies14,15 have interpreted the puzzling spectral properties of a gas
of pyramidalmolecules that date back to the 1950s (ref. 16), in terms
of the occurrence of a QPT with parity-symmetry breaking.

In the present work we report the observation of the full
phase diagram across a QPT where the spatial parity symmetry
is broken. Our system consists of ultracold atoms trapped in a
double-well potential17,18 where the tunable strength of the attractive
interparticle interaction is the control parameter of the transition.
Additional control of the energy mismatch between the two wells
allows driving of discontinuous first-order QPTs in the non-
symmetric ordered part of the phase diagram and observation of
an associated hysteretic behaviour.

In our system, the atomic ground state depends on two
competing energy terms in the Hamiltonian H =Ha+ gHb, where
Ha =

∫
dr9†(r)[−(h̄2/2m)∇2

+ V (r)]9(r) includes kinetic and
potential energy, and Hb= (2πh̄2a0/m)

∫
dr9†(r)9†(r)9(r)9(r)

accounts for contact interaction between the atoms. Here, 9(r)
is the many-body wavefunction, 9†(r) its hermitian conjugate (in
the following we consider normalization 〈9†(r)9(r)〉= 1), m the
atomic mass, a0 is the Bohr radius, h̄ the reduced Planck constant
and V (r) is a double-well trapping potential in the x direction
(see Fig. 1a) and a harmonic trap in the orthogonal plane. The
adimensional control parameter g =Nas/a0< 0 is the product of
the total number of atoms N and the scattering length as < 0
characterizing the interatomic attractive interaction. The full many-
body Hamiltonian is invariant under x↔−x mirror reflection.
This parity symmetry imposes a spatially symmetric ground state
for any value of the control parameter g . Because Ha and Hb do
not commute, the corresponding ground states are quite different.
Ha is minimized by each atom equally spreading on both wells. A
finite energy gap, specified as the tunnelling energy J , separates
the ground and the first (antisymmetric) excited state of Ha. J
can be tuned by controlling the height of the potential barrier
between the two spatial wells. In contrast, gHb is minimized by a
linear combination of two degenerate states, one having all atoms
localized in one well, the second with all atoms localized in the
other well. Thanks to the competition in the Hamiltonian between
the effective repulsion due to the kinetic energy and the attractive
interatomic interaction, the energy gap between the two low-lying

© Macmillan Publishers Limited . All rights reserved

1Istituto Nazionale di Ottica-CNR, 50019 Sesto Fiorentino, Italy. 2LENS European Laboratory for Nonlinear Spectroscopy, and Dipartimento di Fisica e
Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy. 3ICFO-Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology,
08860 Castelldefels (Barcelona), Spain. 4Instituto de Física de São Carlos, Universidade de São Paulo, C.P. 369, 13560-970 São Carlos, São Paulo, Brazil.
5Quantum Science and Technology in Arcetri, QSTAR, 50125 Firenze, Italy. *e-mail: fattori@lens.unifi.it

826 NATURE PHYSICS | VOL 12 | SEPTEMBER 2016 | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys3743
mailto:fattori@lens.unifi.it
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS3743 LETTERS

0

z > 0

z < 0 0
x

g
gc

W
(z

)

g/|gc| z

|z
|

0.8

a

b c

0.6

0.4

0.2

0.0

−1.5 −0.5−1.0 −1.0−0.5 0.0

0

0.0 0.5 1.0

V(x)
z = 0

Figure 1 | Schematics of the parity-symmetry-breaking QPT. a, The ultracold atomic gas (blue wavefunction) is trapped in a double-well potential (black
line). Tuning the interatomic interaction strength g to large negative values, the ground state of the system goes from a gapped symmetric state (atomic
imbalance z=|(NL−NR)/N|=0) to two degenerate asymmetric states (|z|>0). The system undergoes a second-order QPT where the spatial parity
symmetry, that is, reflection with respect to the vertical dotted line (symmetry axis), is broken. We show experimental absorption images in pseudo three
dimensions and false colours of the atoms obtained at di�erent values of g. b, Absolute value of the order parameter z as a function of the control
parameter g in a balanced double well. Error bars are three times the standard deviation (see Supplementary Information). The solid line is the fitting
function with z=0 for g>gc and z=

√
1−(gc/g)2 for g≤gc, with gc as fitting parameter. From a fit to the data we extract gc with a relative uncertainty of

0.15. It agrees within 20% with the theoretical prediction. c, GLPW(z) for di�erent values of g/|gc| across the QPT: g/|gc|=−0.5, solid line; g/|gc|=−1,
dash-dotted line; g/|gc|=−1.2, dashed line.

states vanishes (strictly equal to zero in the thermodynamic limit
N→∞, as→ 0) at a finite critical value of the control parameter
gc. For g > gc the tunnelling energy Ha dominates and the system
is in a symmetric configuration. For g ≤ gc, when the interaction
energy gHb prevails, the system becomes exponentially sensitive to
arbitrarily small fluctuations of the energy of the two wells. This
forces the majority of atoms to localize randomly in one well or
the other (see Fig. 1a). The broken symmetry is characterized by
a non-zero-order parameter that, in our case, is the normalized
atomic population imbalance z = (NL − NR)/N , where NL and
NR are the number of atoms occupying the left and the right
well, respectively.

To measure z across the phase transition (see Fig. 1b) we adopt
the following experimental procedure. We start by cooling a gas
of N = 4,500 atoms well below the Bose–Einstein condensation
point until no thermal fraction can be detected (see Supplementary
Information). The atoms are initially trapped in a harmonic
potential, with a positive scattering length as = 3a0. We reach
different target values of g , above and below the critical point, by
continuously transforming the harmonic trap into a double well,
up to a certain barrier height and tunnelling J ≈ 40Hz, and by
tuning the interatomic scattering length to negative values (see
Supplementary Information). When g > gc, we find the system in
a parity-symmetric disordered phase, with order parameter z≈0
within error bars. Below the critical value, that is, for g < gc,
an ordered phase emerges with z driven away from zero. The
phase transition can be theoretically described by an effective GLP

W (z) = (g̃/2)z2
−
√
1−z2, where g̃ = gU/J is the normalized

control parameter and U is the bulk energy (see Supplementary
Information). When g̃ crosses the critical value g̃c=−1, the shape
of W (z) continuously changes from a parabola to a double well
(see Fig. 1c) with minima located at z=±

√
1−1/g̃ 2 (ref. 19). The

continuous variation of z indicates the occurrence of a continuous
phase transition. From the experimental measurements of the order
parameter we obtain a critical value g̃c=−1.3±0.2 (corresponding
to a critical value of the interaction strength as =−1.8± 0.3a0),
in fair agreement with the theoretical prediction. The error bar is
the quadratic sum of the errors coming from the fit in Fig. 1b,
the atom number measurements and the estimation of the lattice
depths (see Supplementary Information). We believe that the slight
disagreement with respect to the expected value is mainly due to
uncontrolled jumps in the value of the magnetic field whose origin
has not identified. This noise could result in a systematic shift of
the interaction strength of approximately±10% (see Supplementary
Information).

A one-dimensional GLP, which depends on a single real
parameter, describes a phase transition with the breaking of a
discrete symmetry as, for instance, the left–right symmetry in our
case, or the spin-up/spin-down symmetry in the paramagnetic-to-
ferromagnetic transition4. In these systems, a controlled symmetry-
breaking term (in our case provided by an energy gap δ between
the two wells, see Fig. 2a) drives a first-order QPT in the ordered
region of the phase diagram. This can be understood from the
sudden variation of the absolute minimum of the GLP W (z)+ δz
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Figure 2 | First-order QPT. a, Our full control of the double-well potential
include the tuning of the energy gap δ between the two minima (see
Supplementary Information). b, GLPW(z)+δz, plotted for g<gc. Red dots
represent the ground state of the system. c, Ground state atomic imbalance
z (circles) as a function of δ, here expressed in units of the tunnelling energy
J. Di�erent panels correspond to di�erent values of g/|gc|. For g≥gc the
atomic imbalance z changes continuously as a function of δ, whereas for
g<gc the order parameter shows a discontinuity from positive to negative
values signalling the onset of a first-order phase transition. The red lines are
the result of a fit using the Ginzburg–Landau theoretical model (see
Supplementary Information) with gc the only fitting parameter. Horizontal
error bars come from the uncertainty in the depth of the lattices that
directly a�ects the values of δ. Each point has a vertical error of±0.06 due
to limited atom detection sensitivity.

when tuning δ from positive to negative values, as shown in Fig. 2b.
We characterize this QPT by repeating the previous experimental
procedure, above and below the critical point, but adding to the
final potential configuration a finite and controlled value of δ. As
shown in Fig. 2c, for g>gc, the order parameter z changes smoothly
as a function of δ, with a finite susceptibility χ=|dz/dδ| (measured
around z=0). Increasing the strength of the attractive interaction
causes z to depend more and more critically on δ, and χ diverges
at the critical point (see Fig. 3). Performing the susceptibility
measurements for g < gc, we observe an abrupt jump of z when
crossing the value δ=0, signalling the onset of the first-order phase
transition (see two lowest plots in Fig. 2c). The full phase diagram
showing the interplay of the observed discontinuous (first-order)
and continuous (second-order) QPTs is summarized in Fig. 4a.
We identify the universality class of the parity-symmetry-breaking
QPT from the susceptibility measurement. A fit of χ as a function
of the interaction strength according to χ=α/(g−gc)γ is shown in
Fig. 3. The two fitting parameters are γ and α. We obtain a critical
exponent γ =1.0±0.1, in agreement with the Ginzburg–Landau
prediction γ =1 (see Supplementary Information). Therefore, our
QPT belongs to the universality class of the Lipkin–Meshkov–Glick
model20. QPTs with the same universality class have been
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Figure 3 | Susceptibility and measurement of the critical exponent.
Susceptibility χ=|dz/dδ| of the system to potential energy gap δ between
the two wells. The measurement is performed close to the critical point for
values g>gc. The curve is a fit to the data (see text) providing a critical
exponent−1.0±0.1 in excellent agreement with the theoretical prediction,
equal to−1. The error bar in the critical exponent comes from the
indetermination of gc (grey region).

observed in atom–cavity experiments13 and spin–orbit coupled
systems21–23.

Discrete-symmetry models are characterized by metastability
and hysteresis when driving the system across the first-order
transition. Both follow directly from the 1D nature of the effective
GLP. We notice that bifurcation and hysteresis are typical phenom-
ena in the dynamics of systems governed by a nonlinear equation
of motion19,24,25. In our system, the origin of hysteresis can be un-
derstood from the shape of the GLP W (z)+ δz , which for g̃<−1
and |δ|<δc=[(−g̃ )2/3− 1]3/2 shows an absolute minimum and a
local minimum (see Fig. 4b and Supplementary Information). The
latter corresponds to a metastable point with a lifetime depending
on the macroscopic quantum tunnelling rate of the order parameter
through the effective GLP. This rate is exponentially smaller than
the interwell tunnelling rate of the single atoms in the double-well
trap. To demonstrate hysteresis in our system, we set J≈30Hz, add
an energy gap δ0, and prepare a condensate in the well with lower
energy (for example the right one, with δ0=−4J < 0 and z ≈ 1).
We then shift the relative energy of the two wells to a final value
δ in 500ms, keeping J constant, and measure the order parameter
after a short waiting time of 10ms (green squares in Fig. 4c).
The experiment is performed for different values of the control
parameter g . When g<gc, the strong attractive interaction between
atoms forces the condensate to remain localized in the right well
even when its energy minimum is lifted above the left well. When
δ overcomes a critical value δc, a spinoidal instability drives the gas
down to the left towards the absolute minimum of the trapping
potential in a timescale of approximately 10ms, a fraction of 1/J . An
analogous behaviour is observed with an initial imbalance z≈−1
(orange circles in Fig. 4c), forming a hysteresis loop. The area of the
hysteresis loop decreases with increasing g , and disappears for g>gc
(see Fig. 4c).

This work paves the way to the study of macroscopic quantum
tunnelling in the hysteretic regime in the context of the quantum-
to-classical transition problem26. Furthermore, it will be interesting
to explore spontaneous symmetry breaking in gas mixtures
as a function of the interspecies interactions27,28. Finally, our
system will allow investigation of the creation of quantum
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Figure 4 | Full phase diagram and hysteresis. a, Full theoretical phase
diagram showing the interplay of the continuous (second-order—blue line)
and discontinuous (first-order—red line) QPTs. The green and orange lines
shows metastable states giving access to hysteresis. b, GLP for g<gc
(black line) and di�erent values of δ. It shows absolute and local minima
corresponding to ground and metastable states, respectively. Orange
circles and green squares represent the states measured in c. c, Atomic
imbalance as a function of the energy gap δ between the two wells. Green
squares (orange dots) are obtained cooling the gas to its ground state at
negative (positive) δ and then increasing (decreasing) δ to the final value in
500ms and waiting 10ms before the measurement of the imbalance. Lines
are theoretical predictions for the imbalance of the ground and the
metastable states using the Ginzburg–Landau model (see Supplementary
Information). Di�erent panels correspond to di�erent values of g/|gc|.
Large error bars signify the dynamical breaking of metastability
corresponding to oscillation of the gas between the two wells.

fluctuations29 and entanglement5 at the critical points as a
resource for precision measurements30 and other quantum
technologies31.
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