Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A chemically driven quantum phase transition in a two-molecule Kondo system

Abstract

The magnetic properties of nanostructures that consist of a small number of atoms or molecules are typically determined by magnetic exchange interactions. Here, we show that non-magnetic, chemical interactions can have a similarly decisive effect if spin-moment-carrying orbitals extend in space and therefore allow the direct coupling of magnetic properties to wavefunction overlap and the formation of bonding and antibonding orbitals. We demonstrate this for a dimer of metal–molecule complexes on the Au(111) surface. A changing wavefunction overlap between the two monomers drives the surface-adsorbed dimer through a quantum phase transition from an underscreened triplet to a singlet ground state, with one configuration being located extremely close to a quantum critical point.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and spectral properties of dimers consisting of Au-PTCDA complexes on the Au(111) surface.
Figure 2: TIAM and chemical interaction of Au-PTCDA dimers.
Figure 3: Spectral functions and ground states of surface-adsorbed Au-PTCDA dimers in the parity-symmetric case (Vo = 0).
Figure 4: Spectral functions of Au-PTCDA dimers in the parity-broken case, analysed with the NRG method.

Similar content being viewed by others

References

  1. Fu, Y.-S., Xue, Q.-K. & Wiesendanger, R. Spin-resolved splitting of Kondo resonances in the presence of RKKY-type coupling. Phys. Rev. Lett. 108, 087203 (2012).

    Article  ADS  Google Scholar 

  2. Tsukahara, N. et al. Evolution of Kondo resonance from a single impurity molecule to the two-dimensional lattice. Phys. Rev. Lett. 106, 187201 (2011).

    Article  ADS  Google Scholar 

  3. Prüser, H. et al. Interplay between the Kondo effect and the Ruderman–Kittel–Kasuya–Yosida interaction. Nature Commun. 5, 5417 (2014).

    Article  ADS  Google Scholar 

  4. Wahl, P. et al. Exchange interaction between single magnetic adatoms. Phys. Rev. Lett. 98, 056601 (2007).

    Article  ADS  Google Scholar 

  5. Minamitani, E., Nakanishi, H., Dio, W. A. & Kasai, H. Effect of RKKY interaction on the scanning tunneling spectra of a classic Kondo system—Two magnetic atoms adsorbed on a metal surface. J. Phys. Soc. Jpn 78, 084705 (2009).

    Article  ADS  Google Scholar 

  6. Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    Article  ADS  Google Scholar 

  7. Kasuya, T. Theory of metallic ferro- and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45–57 (1956).

    Article  ADS  Google Scholar 

  8. Yosida, K. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).

    Article  ADS  Google Scholar 

  9. Affleck, I., Ludwig, A. W. W. & Jones, B. A. Conformal-field-theory approach to the two-impurity Kondo problem: comparison with numerical renormalization-group results. Phys. Rev. B 52, 9528–9546 (1995).

    Article  ADS  Google Scholar 

  10. Jones, B. A., Varma, C. M. & Wilkins, J. W. Low-temperature properties of the two-impurity Kondo Hamiltonian. Phys. Rev. Lett. 61, 125–128 (1988).

    Article  ADS  Google Scholar 

  11. Jones, B. A. & Varma, C. M. Critical point in the solution of the two magnetic impurity problem. Phys. Rev. B 40, 324–329 (1989).

    Article  ADS  Google Scholar 

  12. Fye, R. M., Hirsch, J. E. & Scalapino, D. J. Kondo effect versus indirect exchange in the two-impurity Anderson model: a Monte Carlo study. Phys. Rev. B 35, 4901–4908 (1987).

    Article  ADS  Google Scholar 

  13. Esat, T. et al. Transfering spin into an extended π orbital of a large molecule. Phys. Rev. B 91, 144415 (2015).

    Article  ADS  Google Scholar 

  14. Sachdev, S. Quantum criticality: competing ground states in low dimensions. Science 288, 475–480 (2000).

    Article  ADS  Google Scholar 

  15. Franke, K. J., Schulze, G. & Pascual, J. I. Competition of superconducting phenomena and Kondo screening at the nanoscale. Science 332, 940–944 (2011).

    Article  ADS  Google Scholar 

  16. Bork, J. et al. A tunable two-impurity Kondo system in an atomic point contact. Nature Phys. 7, 901–906 (2011).

    Article  ADS  Google Scholar 

  17. Jabben, T., Grewe, N. & Schmitt, S. Spectral properties of the two-impurity Anderson model with varying distance and various interactions. Phys. Rev. B 85, 045133 (2012).

    Article  ADS  Google Scholar 

  18. Bulla, R., Costi, T. A. & Pruschke, T. Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys. 80, 395–450 (2008).

    Article  ADS  Google Scholar 

  19. Peters, R., Pruschke, T. & Anders, F. B. Numerical renormalization group approach to Green’s functions for quantum impurity models. Phys. Rev. B 74, 245114 (2006).

    Article  ADS  Google Scholar 

  20. Weichselbaum, A. & von Delft, J. Sum-rule conserving spectral functions from the numerical renormalization group. Phys. Rev. Lett. 99, 076402 (2007).

    Article  ADS  Google Scholar 

  21. Hofstetter, W. & Schoeller, H. Quantum phase transition in a multilevel dot. Phys. Rev. Lett. 88, 016803 (2001).

    Article  ADS  Google Scholar 

  22. Nishimoto, S., Pruschke, T. & Noack, R. M. Spectral density of the two-impurity Anderson model. J. Phys. Condens. Matter 18, 981–995 (2006).

    Article  ADS  Google Scholar 

  23. Jayaprakash, C., Krishna-murthy, H. R. & Wilkins, J. W. Two-impurity Kondo problem. Phys. Rev. Lett. 47, 737–740 (1981).

    Article  ADS  Google Scholar 

  24. Jones, B. A. & Varma, C. M. Study of two magnetic impurities in a Fermi gas. Phys. Rev. Lett. 58, 843–846 (1987).

    Article  ADS  Google Scholar 

  25. Lechtenberg, B. & Anders, F. B. Spatial and temporal propagation of Kondo correlations. Phys. Rev. B 90, 045117 (2014).

    Article  ADS  Google Scholar 

  26. Borda, L. Kondo screening cloud in a one-dimensional wire: numerical renormalization group study. Phys. Rev. B 75, 041307 (2007).

    Article  ADS  Google Scholar 

  27. Rohlfing, M. Electronic excitations from a perturbative LDA + GdW approach. Phys. Rev. B 82, 205127 (2010).

    Article  ADS  Google Scholar 

  28. Greuling, A., Rohlfing, M., Temirov, R., Tautz, F. S. & Anders, F. B. Ab initio study of a mechanically gated molecule: from weak to strong correlation. Phys. Rev. B 84, 125413 (2011).

    Article  ADS  Google Scholar 

  29. Greuling, A. et al. Spectral properties of a molecular wire in the Kondo regime. Phys. Status Solidi 250, 2386–2393 (2013).

    Article  Google Scholar 

  30. Roch, N., Florens, S., Costi, T. A., Wernsdorfer, W. & Balestro, F. Observation of the underscreened Kondo effect in a molecular transistor. Phys. Rev. Lett. 103, 197202 (2009).

    Article  ADS  Google Scholar 

  31. Nozières, P. & De Dominicis, C. T. Singularities in the x-ray absorption and emission of metals. III. One-body theory exact solution. Phys. Rev. 178, 1097–1107 (1969).

    Article  ADS  Google Scholar 

  32. Ogawa, T., Kuwamoto, K., Isoda, S., Kobayashi, T. & Karl, N. 3,4:9,10-perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography. Acta Crystallogr. B 55, 123–130 (1999).

    Article  Google Scholar 

  33. Oleś, A. M. Antiferromagnetism and correlation of electrons in transition metals. Phys. Rev. B 28, 327–339 (1983).

    Article  ADS  Google Scholar 

  34. Heitler, W. & London, F. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z. Phys. 44, 455–472 (1927).

    Article  ADS  Google Scholar 

  35. Bulla, R., Hewson, A. C. & Pruschke, T. Numerical renormalization group calculations for the self-energy of the impurity Anderson model. J. Phys.: Condens. Matter 10, 8365–8380 (1998).

    ADS  Google Scholar 

Download references

Acknowledgements

B.L. and F.B.A. received support by the Deutsche Forschungsgemeinschaft through AN275/7-1. B.L., F.B.A. and M.R. acknowledge support from the NIC Jülich for CPU time under projects no. HHB00 and HMS17.

Author information

Authors and Affiliations

Authors

Contributions

R.T., C.W., T.E. and F.S.T. conceived the experiments. T.E. and R.T. conducted the experiments. T.E. analysed the experimental data. T.D., P.K. and M.R. performed density functional and many-body perturbation calculations and analysed the resultant data. B.L., F.S.T. and F.B.A. developed the theoretical model. B.L. and F.B.A. carried out the numerical renormalization group calculations and analysed the resultant data. T.E. prepared the figures. T.E., R.T., F.B.A. and F.S.T. wrote the paper, with significant contributions from all authors.

Corresponding author

Correspondence to F. Stefan Tautz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1739 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esat, T., Lechtenberg, B., Deilmann, T. et al. A chemically driven quantum phase transition in a two-molecule Kondo system. Nature Phys 12, 867–873 (2016). https://doi.org/10.1038/nphys3737

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing