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A universal moiré e�ect and application in X-ray
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A moiré pattern results from superimposing two black-and-
white or greyscale patterns of regular geometry, such as two
sets of evenly spaced lines. Here, we report the observation of
an analogous e�ect with two transparent phase masks put in a
light beam. The phasemoiré e�ect and the classic moiré e�ect
are shown to be the two ends of a continuous spectrum. The
formerallowsthedetectionofsub-resolution intensityorphase
patterns with a transparent screen. When applied to X-ray
imaging, it enables the realization of a polychromatic far-field
interferometer (PFI) without the need for absorption gratings.
X-ray interferometry cannon-invasivelydetect refractive index
variations inside an object1–10. Current bench-top interferome-
ters operate in the near field with limitations in sensitivity and
X-ray dose e�ciency2,5,7–10. The universal moiré e�ect helps
overcome these limitations and obviates the need for using
hard X-ray absorption gratings with sub-micrometre periods.

The classic moiré effect is the product of two intensity patterns of
slightly different sizes or orientations. It can be found in a variety of
forms in diverse applications, including metrology, precision mea-
surements, alignment and imaging11–13. Transparent phase masks,
or phase gratings, imprint a periodic phase pattern on a wavefront.
When two such gratings are overlaid in a light beam, there is no
moiré effect immediately behind the gratings in the near field; we
did, however, observe an achromatic intensity pattern in the far field.
Its spatial frequency equals the difference between the projected
frequencies of the two gratings. The two gratings can either be in
contact or have a finite spacing.We show that this phasemoiré effect
and the classic effect are the extremes of a general effect for masks
that mix phase and amplitude modulations to various degrees.

In the experiment illustrated in Fig. 1a, two identical visible-light
phase gratings of the same 14.3 µmperiod (G1 andG2) were overlaid
in parallel planes. They were illuminated by a white-light cone beam
from a source of 0.44mm size and projected onto a frosted-glass
image screen (see Supplementary Fig. 1 for a photo of the set-
up, the light spectrum and the phase-shift profile of the gratings).
The geometric distances were L1 = 18.0 cm from the source to
the first grating, L2 varying between 5mm and 20.5 cm from the
second grating to the image screen, and the inter-grating spacing
D fixed at 0.41mm. Broad intensity fringes emerged as the image
screen moved away from the gratings (Fig. 1b). Supplementary
Movie 1 shows the full images when scanning the position of the
image screen.

An intuitive explanation of the phase moiré effect is illustrated
in Fig. 1c. The cone beam projects the self-images of G1 onto
the plane of G2 with a slightly magnified period P1 (ref. 14),

resulting approximately in a combined phase oscillation of the form
φ[cos(2πx/P1)+ cos(2πx/P2)], where P2 is the period of G2. It
can be written as 2φ cos[πx(1/P1− 1/P2)] cos[πx(1/P1+ 1/P2)],
which is equivalent to a single phase grating whose phase shift is
modulated by a beat pattern. The beat pattern represents alternating
strongly and weakly diffracting areas. Light that is transmitted
through the strongly diffracting areas is diverted into side diffraction
orders and away from the direction of straight radial projection.
After a sufficient distance, the redirection of the flux gives rise to
periodic intensity fringes, as shown in Fig. 1c. The measured and
theoretical dependence of the fringe visibility on the position of the
image screen are summarized in Fig. 1d. Fringe visibility is fringe
amplitude/mean intensity, or (Imax− Imin)/(Imax+ Imin).

Themoiré carpet in Fig. 2a shows experimentally the progression
of the moiré fringes with the inter-grating spacing D in the range
between 0.05mm and 5mm. The image screen was fixed at 20 cm
from the source. The gratings were placed midway between them.
As D increases, the difference in the projected frequencies of
the gratings also increases, leading to denser fringes. Coherent
interference between different diffraction orders occurs in the space
between the gratings, producing the appropriate self-images ofG1 at
theG2 plane at regular intervals14 ofD. Therefore, the fringe contrast
underwent a periodic oscillation and gradually diminished with
increasing D owing to the broad spectrum of the light. The interval
of oscillation is theoretically14 2P2/λ. The measured value of 0.74±
0.09mmmatches the 550 nm average wavelength of the white-light
spectrum (Supplementary Fig. 1). The measured and theoretically
calculated fringe visibilities as a function of the spacingD are shown
in Fig. 2b. The measured fringe spatial frequency as a function of D
is also predictable by theory (Fig. 2b). SupplementaryMovie 2 shows
the full images when scanning D.

The theoretical derivation of the general situation of a
polychromatic cone beam illuminating a pair of gratings of different
periods is provided in Methods. The phase moiré effect and the
classic moiré effect are at the two extremes. With pure amplitude
gratings the classic moiré effect appears immediately behind the
gratings. There is no requirement on the lateral coherence of the
light source. With pure phase gratings the phase moiré effect
appears at a distance from the gratings; the lateral coherence of the
light at the first grating should be approximately the period of the
grating. A continuous transition exists between the two extremes
for any combination of intensity and phase modulations.

For phase-contrast imaging applications that require high
sensitivity, the space between the gratings can be the preferred
location to place the objects, because coherent wave interference
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Figure 1 | An example of the phase moiré e�ect between two transparent phase gratings. a, A white-light source of a finite size illuminates the gratings.
A frosted-glass screen captures the projected colour image. b, The vertical cross-section of the image as a function of the grating-to-screen distance L2
shows a moiré pattern arising at a distance. Supplementary Fig. 1 includes a photo of the experimental set-up and Supplementary Movie 1 shows the full
images. c, The explanation is that the two gratings act as a single phase grating whose phase oscillation is modulated by a beat pattern, representing
interleaved strongly and weakly di�racting areas. Photons transmitted through the strongly di�racting areas are di�racted away from the direction of
straight radial projection, giving rise to intensity bands at a distant plane. d, Dependence of measured (red dots) and theoretically calculated (blue line)
fringe visibility on the distance L2. Measurement uncertainty was 0.003.
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Figure 2 | Dependence of the moiré pattern on the inter-grating spacing in the set-up shown in Fig. 1. a, In the moiré carpet, the fringe pattern at a given
inter-grating spacing D is shown as a vertical strip. The strips for the range of D values are stitched into the carpet. b, Quantitative comparison of the moiré
fringe visibility (blue) and spatial frequency (red) between theoretical calculations (solid lines) and experimental results (dots), as functions of the spacing
D. The measurement uncertainty of fringe visibility was 0.003 and the measurement uncertainty of fringe frequency was 0.05mm−1.
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Figure 3 | The moiré e�ect among three phase gratings underlies a polychromatic far-field interferometer in this X-ray example. a, Under a cone beam
the first two gratings form a series of achromatic interference patterns at a plane downstream. The third grating is positioned on or near the plane to form
moiré fringes at a distance. b, SEM image of a cross-section of the phase grating G1. Trenches in silicon are filled with gold to create a periodic profile of
phase shift. c, The grating SEM cross-sections were used to calculate their phase-shift and linear attenuation profiles. Data of the G1 grating at 27.5 keV are
shown. The sharp dips are produced by a thin layer of Pt.
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Figure 4 | Experimental data from the X-ray polychromatic far-field interferometer with mismatched grating periods. a, The moiré carpet shows the
evolution of the fringe pattern as the longitudinal position of the third grating is scanned. b, Quantitative comparison of the fringe visibility (blue) and
spatial frequency (red) between theoretical calculations (solid lines) and measurements (dots), as functions of the position of the G3 grating. The
measurement uncertainty of fringe visibility was 0.005 and the measurement uncertainty of fringe frequency was 0.05mm−1. c, Theoretical (solid blue
line) and measured (red dots) fringe visibilities as a function of the out-of-plane tilt of the grating G1. d, The same comparison for the G3 grating. The peak
fringe visibility of 19.4% was reached by optimizing both grating position and tilts.
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Figure 5 | Multimodal X-ray projection images of a mouse kidney
specimen immersed in water. a, A single shot image of the grating area
without the specimen shows the moiré fringes. Grey scale is the normalized
image intensity. b, The di�erential phase image reveals the outline and
internal blood vessels (white arrows) of the kidney, together with the
graduation marks on the centrifuge tube. Grey scale is in radians. c, The
decoherence image shows reduced moiré fringe amplitude in fatty tissue
(white arrows) and at the edges of the graduation marks. Grey scale is the
linear attenuation coe�cient. d, Conventional attenuation-contrast
radiography shows the fatty tissue as darker areas indicating lower density.
Grey scale is the linear attenuation coe�cient. e, A photograph of the
kidney specimen suspended in water in the centrifuge tube.

occurs here. With this in mind, a three-grating set-up (Fig. 3a) has
the advantage that it allows the gratings to bewidely separated.Here,
the G2 grating refocuses the diffracted waves from G1 into a series
of achromatic Fourier images at a specific plane downstream14.
The G3 grating is placed on or near this plane to produce moiré
effects between itself and the Fourier images. See Methods for the
theoretical formulae of the three-grating set-up. Similar to the two-
grating system, theG1 grating can be a pure intensity or a pure phase
grating as the two extreme cases. The former allows an extended
light source with minimal lateral coherence, but at the cost of light
reduction by G1; the latter requires the lateral coherence of the
source at G1 to be approximately the grating period.

The phase moiré effect is now recognized as the underlying
mechanism of a type of X-ray interferometer that uses only
phase gratings, which has previously demonstrated an order of
magnitude increase in sensitivity and reduction in radiation dose
when compared with the current Talbot–Lau interferometer15.
This understanding leads to the use of purposely mismatched
grating periods to substantially improve the efficiency of the
X-ray polychromatic far-field interferometer. The improved design
has three phase gratings of 1mm by 7 cm area and periods of
399 nm, 400 nm and 400 nm, respectively. Grating fabrication is
described in ref. 16. The X-ray tube had a rhenium–tungsten anode

and operated at 40 kVp/40mA. A 70-µm-wide slit was placed on
the X-ray tube window to limit the vertical size of the source
while keeping sufficient angular spread of the beam to cover the
grating area. See Supplementary Fig. 2 for a photo of the system.
The geometric distances illustrated in Fig. 3a were L1= 0.391m,
D1=0.463m, L3= 0.710m. The distance D3 was scanned over the
rangeD1±8mm. The cross-section profiles of the gratings (Fig. 3b)
were obtained with scanning electron microscopy (SEM). The
gratings are designed for phase shifting but also contain material
absorption. From these profiles both the phase-shift and linear
attenuation profileswere extracted for photon energies of 20–40 keV
(data at 27.5 keV are plotted in Fig. 3c). TheG2 profile was designed
to maximize light diffraction into the±1 orders.

The moiré carpet in Fig. 4a shows the evolution of the moiré
fringes with changing G3 position. Full-field images are provided in
Supplementary Movie 3. The measured and theoretically calculated
fringe visibility and frequency curves are shown in Fig. 4b for
the case of parallel grating planes. The fringe visibility increased
with out-of-plane tilting of the gratings. With G3 positioned at
D3−D1=1.2mm, the measured and theoretically calculated fringe
visibility curves as functions of the tilt angles ofG1 andG3 are shown
in Fig. 4c,d, respectively. The out-of-plane tilt mainly altered the
transmission profiles of the gratings. Their influence on the fringe
contrast is discussed in Methods. The peak fringe visibility of 19.4%
was attained when both G1 and G3 were tilted at 1.2◦. This is a 43%
increase in fringe visibility over the previous 13.5% value15 owing to
the use of mismatched grating periods.

In imaging experiments the samples are positioned behind
gratingG2 (Fig. 3a), where vertically separated light paths coherently
interfere. A local gradient of the refractive index creates a phase shift
of the moiré fringes. An image of the phase shift is a differential
phase image. A second measurement is the attenuation of the fringe
amplitude due to perturbations by the object that reduce the mutual
coherence of the light paths. This provides a decoherence image. The
raw projection images were taken in a phase-stepping procedure7,8,17
and processed with an adaptive algorithm to deal with mechanical
fluctuations. A complete data set included ten images of 1 s exposure
each, at a total entrance surface radiation dose (ESD) of 0.71mGy.
The grating area determined a 0.7mm by 5 cm field of view at the
sample. Samples were scanned in steps of 0.7mm, and multiple
fields of view were tiled to cover the desired height.

Figure 5a shows a reference image without any sample. It is
stretched in the vertical direction owing to an oblique incident
angle of 4.5◦ of the beam on the detector screen for improved
efficiency and vertical resolution18. The grating G3 was slightly
rotated around the beam axis to produce an inclination of the
fringes from the horizontal direction. Figure 5b–d are multimodal
projection images of a formalin-fixed, unstained mouse kidney
specimen immersed in water, including the differential phase,
decoherence and conventional attenuation-contrast radiography.
Although a single projection, the outline and internal blood vessels
of the kidney become visible in the differential phase image (Fig. 5b).
The accompanying decoherence image (Fig. 5c) shows reduced
coherence in the peripheral fat tissue (white arrows) and also in
areas containing steep gradients of the differential phase, such as the
bright edges of the graduation marks on the centrifuge tube. This is
caused by a large dispersion of the fringe phase within a pixel19. The
conventional radiography (Fig. 5d)was takenwith a flat-panel X-ray
detector at a dose of 4.47mGy ESD. A photograph of the specimen
is shown in Fig. 5e.

Generally when creating a distant moiré pattern with a phase
grating, the fringe period scales inversely with the grating period
(see equation (17) in Methods). Therefore, smaller grating periods
allow shorter observation distances. In ideal situations, the moiré
fringe visibility between two phase gratings and among three phase
gratings are estimated at 81% and 33%, respectively. Practically the
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visibility is reduced by less than ideal grating profiles, scattering in
the grating material, spectral dispersion of the grating phase shift
with a broadband source and the detector resolution.

Although the self-imaging of gratings is a coherent interference
effect20, the universal moiré effect is at its core an incoherent
intensity effect. With highly coherent sources such as a point
monochromatic source, the self or Fourier images of gratings
may coexist with the moiré effect in the form of fine fringes
superimposed on broad moiré patterns. The moiré effect between
phase masks still requires a certain level of lateral coherence of
the illumination, because the effect appears at a standoff distance
from the masks. It is shown in Methods that the lateral coherence
length of the illumination at the first phase grating should be
comparable to the grating period. On the other hand, a first
amplitude grating segments the incident beam and removes the
coherence requirement on the illumination similar to the Lau effect,
which is detailed in Methods.

Owing to its simplicity and robustness towards environmental
factors, the phase moiré effect was recently implemented for
polychromatic and monochromatic cold neutron sources in
quantum information and imaging research using pure silicon
gratings as phase masks (D. S. Hussey, D. A. Pushin, M. G. Huber
and D. L. Jacobson, manuscript in preparation). In a broad sense
the universal moiré effect occurs when a periodic screen is placed
on a periodically modulated wavefront. The periodic wavefront
can be the Fourier image of other grating(s) upstream. The classic
moiré effect is a special case where the screen is an intensity mask.
Our finding shows that one can use a phase mask as the screen. The
effect also occurs for pure phase modulations which are not visible
by direct observation of the intensity distribution.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Theoretical modelling of the effect between two diffraction gratings. The theory
applies to the general case of a cone beam illuminating a pair of diffraction gratings
of different periods with a possible spacing between them. The gratings can
modulate the phase or amplitude (or both) of the beam. Two assumptions are made:
the wavelength λ� grating periods; the gratings act as multiplicative transmission
functions on the complex amplitude wavefront. The moiré effect is shown to be
determined by auto-correlation functions of the grating transmission profiles.

Referring to the schematics of Fig. 1a, the scalar field at a point y on the image
plane is given by the Fresnel–Kirchhoff diffraction integral20

V (y)∝
∫∫ 1

r0r1r2
exp[ik(r0+ r1+r 2)]T1(y1)T2(y2)dy1 dy2 (1)

where k is the wavenumber in vacuum, y1 and y2 are coordinates in the G1 and G2

planes; r0, r1 and r2 are the successive spacings between the source, the points y1, y2
and y , respectively; T1 and T2 are the complex grating transmission functions. They
are further written in Fourier series as

T1(y1)=
∑

Am exp(i2πmf1y1) (2)

and

T2(y2)=
∑

Bn exp(i2πnf2y2) (3)

where f1 and f2 are the spatial frequencies of the gratings. The vertical coordinate of
the source is ys. Substituting equations (2) and (3) into equation (1), expanding the
phase factor of each AmBn term to the second order around its minimum point at
∂φ/∂yj=0, and carrying through the Fresnel integral leads to an explicit
expression of the wave field

V (y)∝exp(ikL/cosθ)
∑
m,n

AmBn exp[i80(m,n)+ i81(m,n)] (4)

where θ is the elevation angle of the line connecting the source to point y (Fig. 1a)

80(m,n)=2πmf1
( L1

L
y+

D+L2

L
ys
)

+ 2πnf2
( L1+D

L
y+

L2

L
ys
)

(5)

and

81(m,n)=−
L

2kcos3 θ
[(2πmf1)2L1/L

+ (2πnf2)2L2/L− (2πmf1L1/L−2πnf2L2/L)2] (6)

Considering the phase difference between the AmBn and the Am+1Bn−1 terms, which
contains an achromatic part

80(m,n)−80(m+1,n−1)=2π
(
f2
L1+D

L
− f1

L1

L

)
y

+ 2π
(
f2
L2

L
− f1

D+L2

L

)
ys (7)

and a wavelength-dependent part

81(m,n)−81(m+1,n−1)=2π
(
m+

1
2

)
δ1(λ)

− 2π
(
n−

1
2

)
δ2(λ) (8)

where the increments are

δ1(λ)=
λ

Lcos3 θ
f1L1[(f1− f2)L2+ f1D] (9)

and

δ2(λ)=
λ

Lcos3 θ
f2L2[(f2− f1)L1+ f2D] (10)

The achromatic part (equation (7)) implies the potential for a moiré pattern at the
image plane with a wavelength-independent period of

Pd=L/[(f2− f1)L1+ f2D] (11)

The moiré fringes arise from the product of the AmBn and Am+1Bn−1 terms in the
image intensity distribution of |V (y)|2. Its complex amplitude according to
equations (7) and (8) is

H1(λ)∝exp
[
i
( 2πy

Pd
−

2πys
Ps

)]∑
m

AmA∗m+1e
i2π(m+1/2)δ1

×
∑

n

BnB∗n−1e
−i2π(n−1/2)δ2 (12)

Noting that the phase of the pattern also depends cyclically on the source position
with a period of

Ps=L/[(f1− f2)L2+ f1D] (13)

this is called the source period. The summations in equation (12) are in fact Fourier
coefficients of auto-correlation functions of the grating transmission profiles,
known as the ambiguity function in waveform analysis:∑

m

AmA∗m+1e
i2π(m+ 1

2 )δ1=χ1(δ1P1, f1)

=
1
P1

∫ P1

0
T1(ξ+δ1P1/2)T ∗1 (ξ−δ1P1/2)exp (i2πξ f1)dξ (14)

and ∑
n

BnB∗n−1e
−i2π(n−1/2)δ2=χ

∗

2 (δ2P2, f2)

=

[ 1
P2

∫ P2

0
T2(ξ+δ2P2/2)T ∗2 (ξ−δ2P2/2)exp (i2πξ f2)dξ

]∗
(15)

Substituting equations (14) and (15) into equation (12) provides a closed-form
expression of the moiré fringe contrast. The Fourier coefficient of the fringe
amplitude normalized to the mean intensity is

H1(λ)

H0
=
χ1(δ1P1, f1)
〈T1T ∗1 〉

χ∗2 (δ2P2, f2)
〈T2T ∗2 〉

(16)

where 〈TjT ∗j 〉 denotes the average intensity transmission through a grating.
The fringe and source periods in equations (11) and (13) can be written in

terms of the auto-correlation distances δj(λ) as

Pd=
1

δ2(λ)cos3 θ
λ

P2
L2 (17)

and

Ps=
1

δ1(λ)cos3 θ
λ

P1
L1 (18)

Several physical facts of the universal moiré effect emerge from the formulae. For a
polychromatic source, the fringe contrast is a weighted average of equation (16)
over the light spectrum. The key determinant of the moiré effect is the
auto-correlation distances δj(λ). The equations indicate a trend of decreasing fringe
contrast with increasing spectral spread of δj(λ) when the spacing D is enlarged.
This is seen in the data in Fig. 2b. Owing to the cyclic dependence of the ambiguity
functions on the auto-correlation distances, the fringe contrast oscillates with the
spacing D, as seen in Fig. 2b. Because the auto-correlation distances depend on
both the grating period differential f1− f2 and their spacing, there are a continuous
range of conditions for significant moiré effects. In the example of Fig. 2, a small
gap between two gratings of the same period produces the effect. Alternatively, if
two gratings are overlaid with no spacing, a proper difference in periods also
maximizes the moiré fringes. The fringe period scales linearly with the G2-to-image
distance and inversely with the grating period. An extreme case is when G2 is an
amplitude grating which produces a moiré pattern at δ2=0. It describes the classic
moiré effect appearing immediately behind G2. With a finite-sized source, the
fringe amplitude is the integral of equation (12) over the source distribution. For a
significant moiré effect the source size S should be less than half the source period
Ps. Equivalently, the lateral coherence of the source at the first grating, λL1/S,
should be greater than 2δ1P1. The extreme is when G1 is an amplitude grating,
which produces a moiré effect at δ1=0. In this case there is no limit on the source
size because G1 filters the source into a set of line sources.

Modelling of the three-grating system.Here the first two gratings are widely
separated (Fig. 3a). Previous equations for the two-grating system describe the
wavefront before the third grating. Consider the phase difference between the AmB1

and Am+1B−1 terms of the wave amplitude (equations (4)–(6)). It is independent of
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wavelength and invariant with the diffraction orderm at a specific ‘echo’ plane at a
distance L2 downstream from the G2 grating, where

L2=D1[f1/(2f2− f1)] (19)

At the echo plane the wave amplitude contains the sum of pairs as

VE(y)∝exp(ikLcos3 θ)

×
∑
m

ei[φ0(m,1)+φ1(m,1)]
[AmB1+Am+1B−1ei2π(f1−2f2)y] (20)

Each pair represents an achromatic interference pattern superimposed onto a
spherical wave, or a Fourier image20 from G1. For a polychromatic source the pairs
are mutually incoherent owing to the strong wavelength dependence of φ1(m, 1)
(equation (6)). When a third grating G3 is placed on or near the echo plane, and its
frequency f3 is near 2f2− f1, each Fourier image forms a moiré pattern with G3 at
the image plane further downstream. The incoherent sum of these moiré patterns is
the overall moiré pattern. Referring to Fig. 3a for geometric parameters, the
normalized moiré fringe amplitude is given by

H1(λ)

H0
=
χ1(δ1P1, f1)
〈T1T ∗1 〉

B1B∗−1
χ3(δ3P3, f3)
〈T3T ∗3 〉

(21)

where the fractional auto-correlation distances are

δ1(λ)=λ
f1L1

Lcos3 θ
[(f1− f2)(L−L1)+ (f3− f2)L3

− f2(D3−D1)] (22)

and

δ3(λ)=λ
f3L3

Lcos3 θ
[(f3− f2)(L−L3)+ (f1− f2)L1

−f2(D1−D3)] (23)

Similar to the two-grating case, the moiré fringe period and the source period are
both independent of wavelength:

Pd=L/[(f3− f2)(L−L3)+ (f1− f2)L1− f2(D1−D3)] (24)

and

Ps=L/[(f1− f2)(L−L1)+ (f3− f2)L3− f2(D3−D1)] (25)

The physical effects described by these results are similar to the two-grating case.
With a polychromatic source the moiré effect is maximized for a specific set of
auto-correlation distances δj(λ), which can be adjusted by the position of the third
grating G3, as seen in Fig. 4b; tilting the G1 and G3 gratings out of plane alters their
transmission profiles, which changes the moiré fringe amplitude in a predictable
way, as shown in Fig. 4c,d; the moiré fringe period scales linearly with the
G3-to-image distance and inversely with the grating periods; the extreme case of
significant moiré fringes at δ3=0 when G3 is an amplitude grating describes the
classic moiré effect which appears immediately behind G3; the source size should
be less than half the source period Ps, or equivalently the lateral coherence of the
source at the first grating, λL1/S, should be greater than 2δ1P1; the extreme case of a
moiré pattern at δ1=0 when G1 is an amplitude grating describes the source being
filtered by G1 into a set of line sources.
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