Article

Evidence for universal relations describing a gas with p-wave interactions

Received:
Accepted:
Published online:

Abstract

In dilute gases, a set of universal relations, known as the contact relations, directly connects thermodynamics and microscopic properties. So far, they have been established only for interactions with s-wave symmetry—that is, without relative angular momentum. Here we report measurements of two new physical quantities, the p-wave contacts, and, using recently proposed relations, present evidence that they encode the universal aspects of p-wave interactions. Our experiments use an ultracold Fermi gas of 40K, in which s-wave interactions are suppressed by polarizing the sample, whereas p-wave interactions are enhanced by working near a scattering resonance. Using time-resolved spectroscopy, we study how correlations in the system develop after quenching the atoms into an interacting state. By combining quasi-steady-state measurements with new contact relations, we infer an attractive p-wave interaction energy as large as half the Fermi energy. Our results reveal new ways to understand and characterize the properties of a resonant p-wave quantum gas.

  • Subscribe to Nature Physics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Energetics of a strongly correlated Fermi gas. Ann. Phys. 323, 2952–2970 (2008).

  2. 2.

    Large momentum part of a strongly correlated Fermi gas. Ann. Phys. 323, 2971–2986 (2008).

  3. 3.

    Generalized virial theorem and pressure relation for a strongly correlated Fermi gas. Ann. Phys. 323, 2987–2990 (2008).

  4. 4.

    , & Number of closed-channel molecules in the BEC–BCS crossover. Eur. Phys. J. B 68, 401–415 (2009).

  5. 5.

    & Universal properties of the ultracold Fermi gas. Phys. Rev. A 79, 023601 (2009).

  6. 6.

    in The BCS–BEC Crossover and the Unitary Fermi Gas (ed. Zwerger, W.) 193–231 (Springer, 2009).

  7. 7.

    & General relations for quantum gases in two and three dimensions: two-component fermions. Phys. Rev. A 86, 013626 (2012).

  8. 8.

    & General relations for quantum gases in two and three dimensions. II. Bosons and mixtures. Phys. Rev. A 86, 053633 (2012).

  9. 9.

    , , , & Measurements of Tan’s contact in an atomic Bose–Einstein condensate. Phys. Rev. Lett. 108, 145305 (2012).

  10. 10.

    & Short-distance correlation properties of the Lieb–Liniger system and momentum distributions of trapped one-dimensional atomic gases. Phys. Rev. Lett. 91, 090401 (2003).

  11. 11.

    , & Particle distribution tail and related energy formula. Phys. Rev. A 79, 053640 (2009).

  12. 12.

    et al. Two-dimensional Fermi liquid with attractive interactions. Phys. Rev. Lett. 109, 130403 (2012).

  13. 13.

    & Tan relations in one dimension. Ann. Phys. 326, 2544–2565 (2011).

  14. 14.

    , & Nuclear neutron–proton contact and the photoabsorption cross section. Phys. Rev. Lett. 114, 012501 (2015).

  15. 15.

    , , , & Measurement of p-wave threshold law using evaporatively cooled fermionic atoms. Phys. Rev. Lett. 82, 4208–4211 (1999).

  16. 16.

    , , & Tuning p-wave interactions in an ultracold Fermi gas of atoms. Phys. Rev. Lett. 90, 053201 (2003).

  17. 17.

    et al. p-wave Feshbach resonances of ultracold 6Li. Phys. Rev. A 70, 030702 (2004).

  18. 18.

    et al. Feshbach resonances in fermionic Li-6. Phys. Rev. A 71, 045601 (2005).

  19. 19.

    Chiral p-wave order in Sr2RuO4. Rep. Prog. Phys. 75, 042501 (2012).

  20. 20.

    & Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

  21. 21.

    , & Strongly resonant p-wave superfluids. Phys. Rev. Lett. 99, 210402 (2007).

  22. 22.

    & Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 87, 137–163 (2015).

  23. 23.

    , , & Pseudogap phenomenon in an ultracold Fermi gas with a p-wave pairing interaction. Phys. Rev. A 85, 053628 (2012).

  24. 24.

    & Universal high-momentum asymptote and thermodynamic relations in a spinless Fermi gas with a resonant p-wave interaction. Phys. Rev. Lett. 115, 135303 (2015).

  25. 25.

    , & Universal relations for a Fermi gas close to a p-wave interaction resonance. Phys. Rev. Lett. 115, 135304 (2015).

  26. 26.

    , , & Concept of contact spectrum and its applications in atomic quantum Hall states. Phys. Rev. Lett. 116, 045301 (2016).

  27. 27.

    , & Scattering amplitude of ultracold atoms near the p-wave magnetic Feshbach resonance. Phys. Rev. A 82, 062712 (2010).

  28. 28.

    , , & Multiplet structure of Feshbach resonances in nonzero partial waves. Phys. Rev. A 69, 042712 (2004).

  29. 29.

    , , & Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

  30. 30.

    , & Three fully polarized fermions close to a p-wave Feshbach resonance. Phys. Rev. A 77, 043611 (2008).

  31. 31.

    , , , & p-wave interactions in low-dimensional fermionic gases. Phys. Rev. Lett. 95, 230401 (2005).

  32. 32.

    , & Manipulation of p-wave scattering of cold atoms in low dimensions using the magnetic field vector. Phys. Rev. Lett. 112, 250401 (2014).

  33. 33.

    , , & Realization of a resonant Fermi gas with a large effective range. Phys. Rev. Lett. 108, 045304 (2012).

  34. 34.

    , , & Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture. Nature 485, 615–618 (2012).

  35. 35.

    , , & p-wave Feshbach molecules. Phys. Rev. Lett. 98, 200403 (2007).

  36. 36.

    & Radio-frequency transitions on weakly bound ultracold molecules. Phys. Rev. A 71, 012713 (2005).

  37. 37.

    , & Enhanced paraconductivity-like fluctuations in the radiofrequency spectra of ultracold Fermi atoms. Nature Phys. 5, 736–740 (2009).

  38. 38.

    & Universal short-distance structure of the single-particle spectral function of dilute Fermi gases. Phys. Rev. A 81, 021601 (2010).

  39. 39.

    , & Short-time operator product expansion for rf spectroscopy of a strongly interacting Fermi gas. Phys. Rev. Lett. 104, 223004 (2010).

  40. 40.

    , , & Verification of universal relations in a strongly interacting Fermi gas. Phys. Rev. Lett. 104, 235301 (2010).

  41. 41.

    et al. Resonant scattering properties close to a p-wave Feshbach resonance. Phys. Rev. A 71, 062710 (2005).

  42. 42.

    et al. Collisional properties of p-wave Feshbach molecules. Phys. Rev. Lett. 101, 100401 (2008).

  43. 43.

    , & Experimental determination of p-wave scattering parameters in ultracold 6Li atoms. Phys. Rev. A 88, 012710 (2013).

  44. 44.

    BCS–BEC crossover in a gas of Fermi atoms with a p-wave Feshbach resonance. Phys. Rev. Lett. 94, 050403 (2005).

  45. 45.

    & Resonantly paired fermionic superfluids. Ann. Phys. 322, 2–119 (2007).

  46. 46.

    , , & Measurement of the homogeneous contact of a unitary Fermi gas. Phys. Rev. Lett. 109, 220402 (2012).

  47. 47.

    Modeling interactions for resonant p-wave scattering. Phys. Rev. Lett. 96, 050401 (2006).

  48. 48.

    & Nature and properties of a repulsive Fermi gas in the upper branch of the energy spectrum. Phys. Rev. Lett. 107, 210401 (2011).

  49. 49.

    et al. Binding energies of 6Li p-wave Feshbach molecules. Phys. Rev. A 77, 053616 (2008).

  50. 50.

    & Theory for p-wave Feshbach molecules. Phys. Rev. Lett. 99, 190406 (2007).

  51. 51.

    , & in Proceedings of the XVIII International Conference on Laser Spectroscopy (eds Hollberg, L., Bergquist, J. & Kasevich, M.) 127–137 (World Scientific, 2007).

  52. 52.

    , , , & Molecular probe of pairing in the BEC–BCS crossover. Phys. Rev. Lett. 95, 020404 (2005).

  53. 53.

    et al. Universal behavior of pair correlations in a strongly interacting Fermi gas. Phys. Rev. Lett. 105, 070402 (2010).

  54. 54.

    , , & The equation of state of a low-temperature Fermi gas with tunable interactions. Science 328, 729–732 (2010).

  55. 55.

    et al. Temperature dependence of the universal contact parameter in a unitary Fermi gas. Phys. Rev. Lett. 106, 170402 (2011).

  56. 56.

    , & Stability of fermionic gases close to a p-wave Feshbach resonance. Phys. Rev. A 78, 063616 (2008).

Download references

Acknowledgements

We thank F. Chevy for discussion and shared notes concerning F versus δBm. We also thank N. Zuber for experimental assistance, and J. Bohn, B. Ruzic, S. Tan, E. Taylor, P. Zhang and Q. Zhou for discussion. This work was supported by AFOSR under FA9550-13-1-0063, ARO under W911NF-15-1-0603, the Croucher Foundation, RGC under under 17306414, NKBRSFC, NSERC and NSFC under 11474179, and the Tsinghua University Initiative Scientific Research Program.

Author information

Affiliations

  1. Department of Physics, University of Toronto, M5S 1A7, Canada

    • Christopher Luciuk
    • , Stefan Trotzky
    • , Scott Smale
    •  & Joseph H. Thywissen
  2. Institute for Advanced Study, Tsinghua University, Beijing 100084, China

    • Zhenhua Yu
  3. Department of Physics, Centre of Theoretical and Computational Physics, University of Hong Kong, China

    • Shizhong Zhang
  4. Canadian Institute for Advanced Research, Toronto M5G 1Z8, Canada

    • Joseph H. Thywissen

Authors

  1. Search for Christopher Luciuk in:

  2. Search for Stefan Trotzky in:

  3. Search for Scott Smale in:

  4. Search for Zhenhua Yu in:

  5. Search for Shizhong Zhang in:

  6. Search for Joseph H. Thywissen in:

Contributions

C.L., S.S. and S.T. performed the experiments. C.L., S.S., S.T. and J.H.T. analysed the data. All authors contributed to the interpretation of the spectra. Z.Y., S.T. and S.Z. developed the two-channel model of the dynamics. All authors contributed to the preparation of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Shizhong Zhang or Joseph H. Thywissen.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information