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A structural approach to relaxation in
glassy liquids
S. S. Schoenholz1*†, E. D. Cubuk2†, D. M. Sussman1, E. Kaxiras2 and A. J. Liu1*
In contrastwith crystallization, there isnonoticeable structural
change at the glass transition. Characteristic features of
glassy dynamics that appear below an onset temperature,
T0 (refs 1–3), are qualitatively captured by mean field
theory4–6, which assumes uniform local structure. Studies of
more realistic systems have found only weak correlations
between structure and dynamics7–11. This raises the question:
is structure important to glassy dynamics in three dimensions?
We answer this question a�rmatively, using machine learning
to identify a new field, ‘softness’ which characterizes local
structure and is strongly correlated with dynamics. We find
that the onset of glassy dynamics at T0 corresponds to the
onset of correlations between softness (that is, structure) and
dynamics.Moreover, we construct a simplemodel of relaxation
that agrees well with our simulation results, showing that a
theory of the evolution of softness in time would constitute a
theory of glassy dynamics.

To look for correlations between structure and dynamics, one
typically tries to find a quantity that encapsulates the important
physics, such as free volume, bond orientational order, locally
preferred structure, and so on. In contrast to this approach, we use
a machine learning method designed to find a structural quantity
that is strongly correlated with dynamics. Earlier, we applied this
approach to the simpler problem of classifying particles as being
‘soft’ if they are likely to rearrange or ‘hard’ otherwise12. We describe
a particle’s local structural environment with M = 166 ‘structure
functions’13 that respect the overall isotropic symmetry of the system
and include radial density and bond angle information. We then
define an M-dimensional space, RM , with an orthogonal axis for
each structure function. The local structural environment of a
particle i is thus encoded as a point in M-dimensional space.
We assemble a ‘training set’ from molecular dynamics simulations
consisting of equal numbers of ‘soft’ particles that are about to
rearrange and ‘hard’ particles that have not rearranged in a time
τα preceding their structural characterization, and find the best
hyperplane separating the two groups using the support vector
machines (SVM) method14,15. Finally, we define the softness, Si, of
particle i as the shortest distance between its position inRM and the
hyperplane, where Si>0 if i lies on the soft side of the hyperplane
and Si<0 otherwise.

We study a 10,000-particle 80:20 bidisperse Kob–Andersen
Lennard-Jones glass16 in three dimensions at different densities
ρ and temperatures T above its dynamical glass transition
temperature. All results here are for particles of species A only.
However, the results are qualitatively the same for particles of both
species. At each density we select a training set of 6,000 particles,
taken from amolecular dynamics trajectory at the lowest T studied,
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Figure 1 | The characteristics of the softness field. a, A snapshot of the
system at T=0.47 and ρ= 1.20 with particles coloured according to their
softness from red (soft) to blue (hard). b, The distribution of softness of all
particles in the system (black) and of those particles that are about to
rearrange (red). 90% of the particles that are about to rearrange have
S>0 (shaded region). None of the data included in this plot were in the
training set.

to construct a hyperplane in RM . We then use this hyperplane to
calculate Si(t) for each particle i at each time t during an interval of
30,000τ at each ρ and T .

We can deduce the most important structural features
contributing to softness either by training on fewer structure
functions or by examining the projection of the hyperplane normal
onto each orthogonal structure function axis. Both analyses yield
a consistent picture (see Supplementary Information): the most
important features are the density of neighbours at the first peaks
of the radial distribution functions gAA(r) and gAB(r); these two
features alone give 77% prediction accuracy for rearrangements.
Particles with more neighbours at the first peaks of g (r) have
a lower softness, and are thus more stable. These results are
reminiscent of the cage picture, in which an increase of population
in the first-neighbour shell suppresses rearrangements, or the
free-volume picture, in which particles whose surroundings are
closely packed are more stable than those with more loosely packed
neighbourhoods17. Overall, soft particles typically have a structure
that is more similar to a higher-temperature liquid, where there are
more rearrangements, whereas hard particles have a structure that
is closer to a lower-temperature liquid18.

Figure 1a is a snapshot with particles coloured according to their
softness. Evidently, S has strong spatial correlations. Figure 1b shows
the distribution of softness, P(S), and the distribution of softness
for particles just before they go through a rearrangement, P(S |R).
We see that 90% of the particles that undergo rearrangements
have S> 0. We have also tested other sets of structure functions
(see Supplementary Information) and found nearly identical
accuracy. Softness is therefore a highly accurate predictor of
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Figure 2 | The relationship between softness and dynamics. a, The
probability that particles rearrange as a function of their softness, PR(S), for
temperatures T=0.47, 0.53 and 0.58 plotted in blue, purple and red,
respectively. Solid lines are measurements from molecular dynamics
trajectories. Points represent the probabilities calculated from the
zero-time derivative of the overlap,−dq(S, t)/dt. b, PR(S) as a function of
1/T for five di�erent softness values from S∼−3 (blue) to S∼3 (red). The
inset shows the collapse of these probabilities when PR/P0 is plotted
against1E/T. c,1E andΣ , where PR(S)=exp(Σ−1E/T), versus
softness S. d, Predicted onset temperature T0 versus Tm0 , the onset
temperature measured by Keys, et al.20, for densities
ρ= 1.15, 1.20, 1.25, 1.30. The straight line corresponds to T0=Tm0 .

rearrangements that is reasonably robust to the set of structure
functions chosen.

We next show that the probability that particles rearrange is
a function of their softness. This probability is calculated as the
fraction of particles of a softness, S, that are rearranging at a given
time, PR(S). We plot PR(S) in Fig. 2a in solid lines at temperatures
ranging from T = 0.47 (blue) to T = 0.58 (red). At each T we see
that PR(S) is a strong function of softness, increasing by several
orders of magnitude, especially at the lower temperatures, in the
range S=−3 to S= 3. A similar, albeit more modest, relationship
was seen in ref. 19. When PR(S) is plotted as a function of
1/T for several values of softness (Fig. 2b), the probability that
a particle of softness S will rearrange has Arrhenius behaviour,
PR(S)=P0(S) exp(−1E(S)/T ), where P0(S) and 1E(S) depend on
S. Confirming this observation, PR(S)/P0(S) collapses over many
orders of magnitude for all temperatures when plotted against
1E(S)/T , as shown in the inset of Fig. 2b.

An Arrhenius form emerges when a kinetic process depends
on a single energy scale 1E(S). In Fig. 2c we plot 1E(S) and
Σ(S)≡ lnP0(S) versus S. Both terms depend nearly linearly on
S: 1E = e0 − e1S and Σ =Σ0 −Σ1S, where all four coefficients
are positive and independent of T . Our results are consistent
with the interpretation that, at low temperatures, harder regions
of the glassy liquid with higher energy barriers are frozen out
whereas softer regions are not, leading to heterogeneous dynamics.
These heterogeneities smooth out with increasing temperature, and
vanish altogether once PR(S) no longer depends on softness. This
occurs at the temperature T0 where the softness dependence of
Σ exactly cancels that of 1E/T0, and so T0 = e1/Σ1. This result
can also be seen visually in Fig. 2b, where the different Arrhenius
predictions for PR(S) all intersect at a single temperature, T0, where
the probability of rearrangement will be independent of softness. In
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Figure 3 | Overlap calculated from softness. a, Solid lines are the measured
overlap function, for temperatures T=0.45, 0.47, 0.53, 0.58, 0.63 and 0.70,
from blue to red, respectively. The dashed lines show predictions assuming
each Arrhenius process is independent of one another. b, The solid lines are
the same as in a. Dashed lines are predictions for the overlap function from
PR(S) including changes in the softness field induced by spatial correlation
between rearranging particles.

Fig. 2d we compare our prediction for T0 to the onset temperature
of glassy dynamics measured by Keys et al.20, Tm

0 , at different
densities. The excellent agreement between the predicted T0 and the
measured values implies that the onset of glassy dynamics at T=T0
coincides with the onset of correlations between structure (softness)
and dynamics.

We explore next the relationship between softness and the non-
exponential decay of the overlap function

q(t)=
1
N

∑
i

Θ(a−|ri(t)− ri(0)|)

where N is the number of particles in the system, ri is the position
of particle i, and Θ is the Heaviside function. We take a= 0.5
(ref. 21). In Fig. 3a,b we plot the overlap function for different
temperatures at ρ=1.20. Our aim is to understand the form of the
decay of q(t) from the behaviour of the rearrangement probability,
PR(S). To begin, we define the contribution to the overlap from
particles whose softness was initially S at t = 0, q(S, t). The total
overlap is q(t)=

∫
dS q(S, t)P(S). Because q(S, t) is the fraction of

particles with initial softness S that have not rearranged after a
time t , we expect (dq(S, t)/dt)|t=0=−caPR(S) (see Supplementary
Information for details), where ca is the fraction of rearrangements
that displace particles by more than a. This is indeed the case, as is
evident from the data in Fig. 2a, when (dq(S, t)/dt)|t=0 (points) is
overlaid with PR(S) (solid lines).

If we now assume that each particle rearranges with probability
PR(S) as an independent Arrhenius process according to Fig. 2, then
we can predict the decay of q(S, t) using a simple discrete model: it
can be written in terms of the probability that a particle of softness
S does not rearrange for t−1 time steps before finally rearranging
at time t , given by (1−PR(S))t−1PR(S). The resulting prediction for
q(t) (dashed) is shown in Fig. 3a for several different temperatures.
Although the prediction is not poor, its accuracy decreases at longer
times, particularly at lower temperatures.

We now show that the discrepancy between our naive theory
and the decay of q(t) primarily results from a crucial neglected
feature: even if a given particle does not rearrange, its local structural
environment—and therefore its softness—can be altered if nearby
particles rearrange. This physics is reminiscent of facilitation.

To take this facilitation into account, we calculate the ‘softness
propagator’, G(S, S0, t), defined as the distribution of softness at
time t for particles that start with a softness S0 at t = 0 and move
less than a distance a after a time t (that is, that do not rear-
range in a time t). Figure 4a shows a Gaussian approximation to
G(S,S0=−3, t). We see that G(S,S0, t) is sharply peaked around S0
at small t , but widens and shifts with increasing t , reminiscent of
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Figure 4 | Time evolution of softness. a, The stochastic evolution of softness in time as seen through the evolution of the Gaussian approximation to the
distribution of softness. b, The time evolution of the softness distribution for a collection of particles with initial softness S0∼−3 from t=0 (blue) to
t= 1,000τ (pink). Points are the measured histogram values, and the dashed lines are Gaussian approximations to the distribution. c, The time evolution of
the average softness for particles that start from several softness values ranging from S0∼−3 (blue) to S0∼3 (red).

directed diffusion. Figure 4b showsG(S,S0=−3, t) at several differ-
ent times, where points are measured probabilities and dashed lines
are their Gaussian approximations. In Fig. 4c we plot the mean soft-
ness evaluated as 〈S(t)〉S0=

∫
dSSG(S,S0, t) for several different val-

ues of S0. For each S0 the average softness of particles evolves towards
the mean of the equilibrium softness distribution over a time period
of approximately τα . The softness propagator is evaluated only for
particles that have not rearranged, so Fig. 4 shows that rearrange-
ments of nearby particles affect a particle’s softness significantly.

Our first naive prediction based on the assumption that particles
rearrange independently corresponds to G(S, S0, t) = δ(S − S0).
We refine our theory by using the actual softness propagator in
connecting the probability of rearranging, PR(S), with the overlap
q(S, t) (see Supplementary Information). For ease of calculation, we
approximate G(S,S0, t) as a Gaussian distribution in S and calculate
its mean and variance as functions of S0 and t from simulated
data. The resulting prediction for the overlap is shown in Fig. 3b.
The agreement with the actual q(t) is excellent, suggesting that
an understanding of the time evolution of the softness field, or
equivalently of the softness propagator, would suffice to understand
the non-exponential decay of the overlap function.

Our results show that there is structure hidden in the disorder of
glassy liquids. This structure can be quantified by softness, which
controls glassy dynamics at temperatures below T0. According
to our analysis, simple Arrhenius relaxation for each softness,
coupled with the time evolution of softness, leads to the observed
slow, non-exponential relaxation dynamics of glassy liquids below
T0. Thus, our results suggest that the challenge of understanding
glass transition dynamics can be reframed as the challenge of
understanding the evolution of softness.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
System information.We study a 10,000-particle Kob–Andersen model, a 80:20
binary LJ mixture16 with parameters: σAA=1.0, σAB=0.8, σBB=0.88, εAA=1.0,
εAB=1.5, εBB=0.5,mA=mB=1. Time is measured in units of τ=

√
mAσ

2
AA/εAA

and the Boltzmann constant is kB=1. We cut off the LJ potential at 2.5σAA and
smooth the potential so that force varies continuously. This mixture has been
characterized extensively. In particular, we compare our predictions to the
measurements of the onset temperature in Keys and colleagues20. Simulations were
done using LAMMPS (ref. 22) in an NVT ensemble with a Nosé–Hoover
thermostat and a time step of 0.0025τ . We output states every τ and quench them
to their nearest inherent structure using a combination of conjugate gradient and
FIRE algorithms. Throughout this study we use inherent structure positions.
However, qualitatively similar results can be obtained using time-averaged
positions. We study this system over the temperatures and number densities listed
in Table 1.

Identifying rearrangements.We adapt a method first proposed by Candelier and
colleagues23,24. A timescale tR=10τ is chosen to be commensurate with the amount
of time the system takes to complete a rearrangement. Then two time intervals are
defined as A=[t− tR/2, t] and B=[t , t+ tR/2]. An indicator function can then be
written as

phop(t)=
√
〈(ri−〈ri〉B)2〉A〈(ri−〈ri〉A)2〉B (1)

where 〈 〉A and 〈 〉B are averages over the intervals A and B respectively. phop is large
when the mean position of a particle changes appreciably. Otherwise, it is similar in
magnitude to the variance in particle positions due to noise from the inherent
structure calculation.

To find rearrangements we restrict our attention to events in which phop exceeds
a threshold of 0.05, which is large compared to the scale of fluctuations in particle
positions but small compared to the typical value of phop during a rearrangement.
As discussed in the Supplementary Methods, we define rearrangements to be those
events with p∗hop>pc=0.2. Changing this cutoff affects the results only
quantitatively and manifests itself primarily as a shift in the energy scale,1E,
which is approximately logarithmic in the cutoff. This agrees with the observations
of Keys et al.20, who saw a similar logarithmic shift in the energy scale governing
rearrangements with the size of the rearrangements.

Note that rearrangements defined using phop result in particle displacements
that follow a distribution that depends on the cutoff pc used. This pc
dependence needs to be addressed when comparing the probability of
rearrangement to the overlap function and its derivative, which are defined in
terms of a length scale a. To do this, we multiply PR by a temperature-independent
constant ca, namely the fraction of rearrangements that displace particles by more
than a.

Computing softness.We have made two improvements that greatly increased
the prediction accuracy for rearrangements compared to ref. 12. First, we
identified rearrangements more carefully, as detailed above. Second, we defined our
training sets more carefully. Each training set contains 6,000 particles that
rearrange in the next time step, each labelled with yi=1, as well as 6,000 particles
that have not rearranged for a time τα before the structure was calculated, each
labelled with yi=0. These particles were chosen randomly from the set of all
particles satisfying these conditions fromMD simulations at a low temperature.
Then, a training set of N particles can be written as

{(
F1,y1

)
, . . . ,

(
FN ,yN

)}
, where

Fi=
{
F 1
i , . . . ,FM

i

}
are theM structure functions that describe the local

neighbourhood of particle i.
As in ref. 12 we use two classes of functions to generate the set ofM structure

functions. The first class measures the density of particles a distance r±δ from a
reference particle, i,

Table 1 | Number densities and temperatures studied.

ρ 1.15 1.20 1.25 1.30

T 0.37 0.45 0.58 0.70
0.42 0.47 0.61 0.75
0.45 0.51 0.69 0.84
0.52 0.53 0.76 0.92

0.56 0.97 1.12
0.58
0.70

Each column contains the temperatures studied for a given number density ρ.

GX (i; r ,δ)=
∑
j∈X

e−
1

2δ2
(r−Rij)2 (2)

where Rij is the distance between particles i and j and X denotes a species whose
density we wish to probe. By varying r , δ and X these functions investigate
different aspects of the density of particles near the particle i. In this work we keep
δ=0.1σAA fixed. The second class of functions counts the number of small (or
large) bond angles between triples of particles within a distance ξ of one another. It
is given by

ΨXY (i;ξ ,λ,ζ )=
∑
j∈X

∑
k∈Y

e−(R
2
ij+R

2
jk+R

2
ik)/ξ

2
(1+λcosθijk)ζ (3)

where θijk is the angle between Rij and Rik, λ=±1 determines whether we consider
small or large bond angles, ζ determines the angular resolution, and X and Y are
species. By varying X , Y , ζ , λ and ξ we probe different aspects of a particle’s
angular neighbourhood.

We then use an SVM to find the hyperplane w ·F−b=0 that separates the
points with yi=1 from those with yi=0. This hyperplane is used on the rest of the
data to reach the results reported. The SVM is trained—that is, the hyperplane is
constructed—on the binary variable y using the LIBSVM package14. It is not
possible to find a hyperplane that perfectly separates the two different classes. We
use a penalty parameter C and find the optimal hyperplane equation by minimizing

1
2
wT

·w+C
N∑
i=1

χi (4)

with the constraint yi ·
(
wT ·Fi+b

)
≥1−χi and χi≥0, where χi are the slack

variables. The C parameter was chosen through cross-validation12. The hyperplane
obtained from this training can be used to classify a new particle neighbourhood,
Fn, as soft or hard. Fn is soft if w ·Fn−b>0, and hard otherwise. The continuous
variable softness is defined by Sn=w ·Fn−b. See Supplementary Information for
other classification schemes explored.
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