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Transition to turbulence
As any physicist knows, fluid in a pipe can 
flow smoothly at sufficiently low speeds, 
as parcels of fluid trace out continuous 
streamlines. At higher speeds, the simple 
flow often becomes turbulent, with fluid 
elements now moving on disorderly, 
chaotic paths. In 1883, the British physicist 
Osborne Reynolds tried to clarify details of 
this transition, along the way introducing 
his Reynolds number, Re, as a key 
dimensionless quantity characterizing flows 
by the relative importance of inertial and 
viscous forces.

Today, physicists still lack a theory, based 
on first principles, explaining the nature of 
this transition. Even so, remarkable progress 
has been made in the past decade, and 
turbulence in pipe flow is finally yielding 
some of its secrets. 

Naively, one might imagine that the 
stable, laminar flow simply becomes unstable 
at sufficient flow speeds — or, equivalently, 
a high enough Reynolds number, Re. Yet, 
according to the Navier-Stokes equations, 
the laminar state is in fact always linearly 
stable. When disturbed vigorously, 
turbulence in pipes begins at Re ~ 2,000, 
whereas in especially quiescent conditions, 
the transition can be delayed to Re ~ 12,000 
or even higher.

This confusing situation motivated 
Reynolds in his 1883 work to define the 
turbulent transition — linked to the critical 
Reynolds number, Rec — as the point 
beyond which turbulence, once started, will 
persist indefinitely. Turbulence can exist, or 
not exist, both below and above the critical 
threshold. For Re < Rec, it always dies out 
eventually, while for Re > Rec, turbulence 
once created persists.

So how does this transition come about? 
In a series of experiments over the past 
decade, physicists have pinned down a 
number of telling empirical details. To 
begin with, at low Re, turbulence always 
settles into a simple form — it exists not as 
a spatially extended pattern, but in localized 
‘puffs’, separated by laminar zones. The 
typical lifetime of a puff seems to increase 
with Re in a faster-than-exponential way. 
Even so, this lifetime — at least within the 
limits of experiment — always remains finite 
(B. Hof et al., Nature 443, 59–62; 2006).

One might have imagined persistent 
turbulence arising from a finite Re 
divergence of this lifetime, but that is not 
the case. Rather, something else seems to 
happen: puffs at higher Re not only last 

longer, but also begin to split apart, making 
turbulence spread. The rate at which puffs 
split apart also increases with Re, again in a 
faster-than-exponential way (K. Avila et al., 
Science 333, 192–196; 2011), and it is the 
combination of these two trends — puffs 
lasting longer and splitting more quickly — 
that lies behind the transition to lasting 
turbulence. Below the critical Re, puffs die 
out more quickly than they split to generate 
new ones. Turbulence dies out. Above the 
critical Re, the splitting happens faster than 
the dying out, and turbulence persists.

Intriguingly, there is a close similarity 
with the dynamics of epidemics. Moving 
Re up through the critical value is like 
increasing the basic reproduction number 
for an infectious agent through the critical 
point so that each new infection ultimately 
creates more than one further infection, and 
the agent becomes endemic.

This picture of turbulence gains further 
support from theoretical approaches. Thirty 
years ago, French physicist Yves Pomeau 
suggested that the coarse-grained features 
of how turbulent and laminar zones mingle 
in regimes of mixed flow might act like 
patterns in so-called directed percolation. 
This is a fundamental stochastic spreading 
process linked to phenomena ranging 
from fluid movement through porous 
media to forest fires. Inspired by this idea, 
mathematician Dwight Barkley of the 
University of Warwick recently proposed a 
model for pipe flow in which turbulent puffs 
behave rather like action potentials in nerve 
axons. The state of linearly stable laminar 
flow would be the medium rest state, with 
turbulence the excited state.

A model based on this picture 
(D. Barkley Phys. Rev. E 84, 016309; 2011) 
shows a continuous transition to sustained 
turbulence at a critical value of Rec. The 
mean puff lifetime grows with Re, as does 
the rate of splitting, and just above Rec, a 
puff is more likely to split than to decay. Just 
above the critical point, Barkley found, the 
fraction of fluid in the turbulent phase grows 
as (Re − Rec)0.28. This is just as expected if 

the transition really is in the class of directed 
percolation, as Pomeau proposed. More 
recently, Barkley and colleagues have taken 
this approach further (D. Barkley et al. 
Nature 526, 550–553; 2015), offering a 
simple dynamical system that accounts for 
even more features of pipe flow, including 
how puffs grow wider with time as they 
flow downstream.

An alternative — and quite different 
theoretical perspective — points to directed 
percolation as well. Nigel Goldenfeld 
and colleagues (Nature Phys. 
http://doi.org/96m; 2015) ran numerical 
simulations of pipe flow and tried to identify 
the most important non-turbulent collective 
modes. These turned out to be so-called ‘zonal 
flows’ representing azimuthal modulations of 
the basic laminar flow pattern. These zonal 
flows represent important coherent ways that 
energy often seems to get organized in these 
pipe flows.

From these observations, the researchers 
noted that these zonal flows compete with 
turbulence following a basic predator–
prey interaction. In this picture, the basic 
laminar flow is akin to a nutrient, which 
turbulence (the prey species) feeds on 
and spreads. In turn, turbulence can be 
fed on by the zonal flows (the predator 
species). Studying the simplest model for 
such interactions, the authors found that it 
leads to distributions of puff lifetimes and 
splitting times that look very much like 
those found for pipe flow. In this case, the 
parameter playing the role of Re is the prey 
(or turbulent puff) birth rate.

Again, as it turns out, this simple 
predator–prey model maps onto a statistical 
model in the directed percolation class. So 
Pomeau’s conjecture seems to be on target, 
and supported from two different points 
of view. It seems that at least one small 
part of the long quest to understanding the 
transition to turbulence may be coming 
nearer to a close. At the same time, much 
less remains known about turbulence 
at very high Re, far away from the 
transition regime.

These results are also satisfying as directed 
percolation is thought to be the general 
universality class for non-equilibrium phase 
transitions with an absorbing state — a state 
that, once entered, is never left. Surprisingly, 
turbulence in pipe flow may be the first good 
experimental example. ❐
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