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Ferromagnetic and antiferromagnetic order in
bacterial vortex lattices
HugoWioland1,2†, Francis G. Woodhouse1,3†, Jörn Dunkel4 and Raymond E. Goldstein1*
Despite their inherently non-equilibrium nature1, living
systems can self-organize in highly ordered collective states2,3
that share striking similarities with the thermodynamic
equilibrium phases4,5 of conventional condensed-matter and
fluid systems. Examples range from the liquid-crystal-like
arrangements of bacterial colonies6,7, microbial suspensions8,9
and tissues10 to the coherent macro-scale dynamics in schools
of fish11 and flocks of birds12. Yet, the generic mathematical
principles that govern the emergence of structure in such
artificial13 and biological6–9,14 systems are elusive. It is not clear
when, or even whether, well-established theoretical concepts
describing universal thermostatistics of equilibrium systems
can capture and classify ordered states of living matter. Here,
we connect these two previously disparate regimes: through
microfluidic experiments and mathematical modelling, we
demonstrate that lattices of hydrodynamically coupled
bacterial vortices can spontaneously organize into distinct
patterns characterized by ferro- and antiferromagnetic order.
The coupling between adjacent vortices can be controlled
by tuning the inter-cavity gap widths. The emergence of
opposing order regimes is tightly linked to the existence of
geometry-induced edge currents15,16, reminiscent of those in
quantum systems17–19. Our experimental observations can
be rationalized in terms of a generic lattice field theory,
suggesting that bacterial spin networks belong to the same
universality class as a wide range of equilibrium systems.

Lattice field theories (LFTs) have been instrumental in
uncovering a wide range of fundamental physical phenomena,
from quark confinement in atomic nuclei20 and neutron stars21 to
topologically protected states of matter22 and transport in novel
magnetic23 and electronic24,25 materials. LFTs can be constructed
either by discretizing the spacetime continuum underlying classical
and quantum field theories20, or by approximating discrete
physical quantities, such as the electron spins in a crystal lattice,
through continuous variables. In equilibrium thermodynamics,
LFT approaches have proved invaluable both computationally
and analytically, for a single LFT often represents a broad class
of microscopically distinct physical systems that exhibit the
same universal scaling behaviours in the vicinity of a phase
transition4,26. However, until now there has been little evidence
as to whether the emergence of order in living matter can be
understood within this universality framework. Our combined
experimental and theoretical analysis reveals a number of striking
analogies between the collective cell dynamics in bacterial fluids

and known phases of condensed-matter systems, thereby implying
that universality concepts may be more broadly applicable than
previously thought.

To realize a microbial non-equilibrium LFT, we injected dense
suspensions of the rod-like swimming bacterium Bacillus subtilis
into shallow polydimethyl siloxane (PDMS) chambers in which
identical circular cavities are connected to form one- and two-
dimensional (2D) lattice networks (Fig. 1, Supplementary Fig. 6
and Methods). Each cavity is 50 µm in diameter and 18 µm deep,
a geometry known to induce a stably circulating vortex when a
dense bacterial suspension is confined within an isolated flattened
droplet15. For each cavity i, we define the continuous vortex spin
variable Vi(t) at time t as the total angular momentum of the local
bacterial flow within this cavity, determined by particle imaging
velocimetry (PIV) analysis (Fig. 1b,f; Supplementary Movies 1
and 2 and Methods). To account for the effect of oxygenation
variability on suspension motility9, flow velocities are normalized
by the overall root-mean-square (r.m.s.) speed measured in the
corresponding experiment. Bacterial vortices in neighbouring
cavities interact through a gap of predetermined width w
(Fig. 1f). To explore different interaction strengths, we performed
experiments over a range of gap parameters w (Methods). For
square lattices, we varied w from 4 to 25 µm and found that for
all but the largest gaps, w≤w∗≈20 µm, the suspensions generally
self-organize into coherent vortex lattices, exhibiting domains
of correlated spins whose characteristics depend on coupling
strength (Fig. 1a,e). If the gap size exceeds w∗, bacteria can move
freely between cavities and individual vortices cease to exist. Here,
we focus exclusively on the vortex regime w < w∗ and quantify
preferred magnetic order through the normalized mean spin–spin
correlation χ=〈6i∼jVi(t)Vj(t)/6i∼j|Vi(t)Vj(t)|〉, where 6i∼j
denotes a sum over pairs {i, j} of adjacent cavities and 〈 · 〉 denotes
time average.

Square lattices reveal two distinct states of preferred magnetic
order (Fig. 1a,e,i), one with χ <0 and the other with χ >0,
transitioning between them at a critical gap width wcrit ≈ 8 µm
(Fig. 1j). For subcritical values w < wcrit, we observe an
antiferromagnetic phase with anti-correlated (χ < 0) spin
orientations between neighbouring chambers on average (Fig. 1a
and Supplementary Movie 1). By contrast, for w>wcrit, spins are
positively correlated (χ >0) in a ferromagnetic phase (Fig. 1e and
Supplementary Movie 2). Noting that the r.m.s. spin 〈Vi(t)2〉1/2
decays only slowly with increasing gap width w→w∗ (Fig. 1k),
and that the chambers do not impose any preferred handedness
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Figure 1 | Edge currents determine antiferromagnetic and ferromagnetic order in a square lattice of bacterial vortices. a, Three domains of
antiferromagnetic order highlighted by dashed white lines (gap width w=6 µm). Scale bar, 50 µm. Overlaid false colour shows spin magnitude (see
Supplementary Movie 1 for raw data). b, Bacterial flow PIV field within an antiferromagnetic domain (Supplementary Movie 1). For clarity, not all velocity
vectors are shown. Largest arrows correspond to speed 40 µms−1. Scale bar, 20 µm. c, Schematic of bacterial flow circulation in the vicinity of a gap. For
small gaps w<wcrit, bacteria forming the edge currents (blue arrows) swim across the gap, remaining in their original cavity. Bulk flow (red) is directed
opposite to the edge current15,16 (Supplementary Movie 3). d, Graph of the Union Jack double-lattice model in an antiferromagnetic state with zero net
pillar circulation. Solid and dashed lines depict vortex–vortex and vortex–pillar interactions of respective strengths Jv and Jp. Vortices and pillars are
colour-coded according to their spin. e, For supercritical gap widths w>wcrit, extended domains of ferromagnetic order predominate (Supplementary
Movie 2; w= 11 µm). Scale bar, 50 µm. f, PIV field within a ferromagnetic domain (Supplementary Movie 2). Largest arrows: 36 µms−1. Scale bar, 20 µm.
g, For w>wcrit, bacteria forming the edge current (blue arrows) swim along the PDMS boundary through the gap, driving bulk flows (red) in the opposite
directions, thereby aligning neighbouring vortex spins. h, Ferromagnetic state of the Union Jack lattice induced by edge current loops around the pillars.
i, Trajectories of neighbouring spins (∗-symbols in a,e) fluctuate over time, signalling exploration of a fluctuating steady state under a non-zero e�ective
temperature (top, antiferromagnetic; bottom, ferromagnetic). j, The zero of the spin–spin correlation χ at wcrit≈8 µmmarks the phase transition. The
best-fit Union Jack model (solid line) is consistent with the experimental data. k, R.m.s. vortex spin 〈V2

i 〉
1/2 decreases with the gap size w, showing

weakening of the circulation. R.m.s. pillar spin 〈P2j 〉
1/2 increases with w, reflecting enhanced bacterial circulation around pillars. Each point in j,k represents

an average over≥5 movies in 3 µm bins at 1.5 µm intervals; vertical bars indicate standard errors (Methods).

on the vortex spins (Supplementary Fig. 1 and Supplementary
Section 1), we conclude that the observed phase behaviour is
caused by spin–spin interactions. However, although both phases
possess a well-defined average vortex–vortex correlation, the
individual spins fluctuate randomly over time as ordered domains
split, merge and flip (Fig. 1i and Supplementary Figs 1 and 3)
while the system explores configuration space inside a statistical
steady state (Supplementary Sections 1 and 3). Thus, although
the bacterial vortex spins {Vi(t)} define a real-valued lattice field,
the phenomenology of these continuous bacterial spin lattices is
qualitatively similar to that of the classical 2D Ising model4 with
discrete binary spin variables si ∈ {±1}, whose configurational
probability at finite temperature T = (kBβ)−1 is described by a
thermal Boltzmann distribution ∝ exp(−βJ6i∼jsisj), where J > 0
corresponds to ferromagnetic and J<0 to antiferromagnetic order.
The detailed theoretical analysis below shows that the observed
phases in the bacterial spin system can be understood quantitatively
in terms of a generic quartic LFT comprising two dual interacting

lattices. The introduction of a double lattice is necessitated by the
microscopic structure of the underlying bacterial flows. By analogy
with a lattice of interlocking cogs, one might have intuitively
expected that the antiferromagnetic phase would generally be
favoured, because only in this configuration does the bacterial
flow along the cavity boundaries conform across the inter-cavity
gap, avoiding the potentially destabilizing head-to-head collisions
that would occur with opposing flows (Fig. 1b,c). However, the
extent of the observed ferromagnetic phase highlights a competing
biofluid-mechanical effect.

Just as the quantum Hall effect17 and the transport properties
of graphene18,19 arise from electric edge currents, the opposing
order regimes observed here are explained by the existence of
analogous bacterial edge currents. At the boundary of an isolated
flattened droplet of a bacterial suspension, a single layer of cells—
an edge current—can be observed swimming against the bulk
circulation15,16. This narrow cell layer is key to the suspension
dynamics: the hydrodynamics of the edge current circulating
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in one direction advects nearby cells in the opposite direction,
which in turn dictate the bulk circulation by flow continuity
through steric and hydrodynamic interactions16,27. Identical edge
currents are present in our lattices (Supplementary Movie 3) and
explain both order regimes as follows. In the antiferromagnetic
regime, when w < wcrit, the bacterial edge current driving a
particular vortex will pass over the gap without leaving the cavity
(Fig. 1c). Interaction with a neighbouring edge current through
the gap favours parallel flow, inducing counter-circulation of
neighbouring vortices and therefore driving antiferromagnetic
order (Fig. 1d). However, when w > wcrit, the edge currents
can no longer pass over the gaps and instead wind around the
star-shaped pillars dividing the cavities (Fig. 1g). A clockwise
(resp. anticlockwise) bacterial edge current about a pillar induces
anticlockwise (resp. clockwise) fluid circulation about the pillar
in a thin region near its boundary. Flow continuity then induces
clockwise (resp. anticlockwise) flow in all cavities adjacent to the
pillar, resulting in ferromagnetic order (Fig. 1h). Thus by viewing
the system as an anti-cooperative Union Jack lattice28,29 of both bulk
vortex spins Vi and near-pillar circulations Pj, we accommodate
both order regimes: antiferromagnetism as indefinite circulations
Pj=0 and alternating spins Vi=±V (Fig. 1d), and ferromagnetism
as definite circulations Pj=−P< 0 and uniform spins Vi=V > 0
(Fig. 1h). To verify these considerations, we determined the net
near-pillar circulation Pj(t) using PIV (Methods) and found that
the r.m.s. circulation 〈Pj(t)2〉1/2 shows the expected monotonic
increase as the inter-cavity gap widens (Fig. 1k).

Competition between the vortex–vortex and vortex–pillar
interactions determines the resultant order regime. Their relative
strengths can be inferred by mapping each experiment onto a
continuous-spin Union Jack lattice (Fig. 1d,h). In this model, the
interaction energy of the time-dependent vortex spins V={Vi} and
pillar circulations P={Pj} is defined by the LFT Hamiltonian

H(V,P)=−Jv
∑
Vi∼Vj

ViVj− Jp
∑
Vi∼Pj

ViPj

+

∑
Vi

(
1
2
avV 2

i +
1
4
bvV 4

i

)
+

∑
Pj

1
2
apP2

j (1)

The first two sums are vortex–vortex and vortex–pillar interactions
with strengths Jv, Jp<0, where∼ denotes adjacent lattice pairs. The
last two sums are individual vortex and pillar circulation potentials.
Vortices must be subject to a quartic potential function with bv>0
to allow for a potentially double-welled potential if av<0, encoding
the observed symmetry breaking into spontaneous circulation
in the absence of other interactions15,27. In contrast, our data
analysis implies that pillar circulations are sufficiently described
by a quadratic potential of strength ap> 0 (Supplementary Fig. 4
and Supplementary Section 4). To account for the experimentally
observed spin fluctuations (Fig. 1i and Supplementary Fig. 1), we
model the dynamics of the lattice fieldsV andP through the coupled
stochastic differential equations (SDEs)

dV=−(∂H/∂V)dt+
√
2TvdWv (2)

dP=−(∂H/∂P)dt+
√

2TpdWp (3)

where Wv and Wp are vectors of uncorrelated Wiener processes
representing intrinsic and thermal fluctuations. The overdamped
dynamics in equations (2) and (3) neglects dissipative Onsager-
type cross-couplings, as the dominant contribution to friction
stems from the nearby no-slip PDMS boundaries (Supplementary
Section 7). The parameters Tv and Tp set the strength of

random perturbations from energy-minimizing behaviour. In the
equilibrium limit when Tv=Tp=T , the stationary statistics of the
solutions of equations (2) and (3) obey the Boltzmann distribution
∝e−H/T . We inferred all seven parameters of the full SDE model
for each experiment by linear regression on a discretization of
the SDEs (Supplementary Fig. 2 and Supplementary Section 2).
The differing sublattice temperatures Tv 6= Tp found show that
the system is not in thermodynamic equilibrium owing to its
active microscopic constituents (Supplementary Fig. 2). Instead,
the system is in a pseudo-equilibrium statistical steady state
(Supplementary Section 1), which we will soon show can be
reduced to an equilibrium-like description. As a cross-validation,
we fitted appropriate functions of gapwidthw to these estimates and
simulated the resulting SDEmodel over a range ofw on a 6×6 lattice
concordant with the observations (Supplementary Section 3). The
agreement between experimental data and the numerically obtained
vortex–vortex correlation χ(w) supports the validity of the double-
lattice model and its underlying approximations (Fig. 1j).

To reconnect with the classical 2D Ising model and understand
better the experimentally observed phase transition, we project
the Hamiltonian (1) onto an effective square lattice model by
making a mean-field assumption for the pillar circulations. In
the experiments, Pi is linearly correlated with the average spin
of its vortex neighbours [Pi]V = (1/4)6j :Vj∼PiVj, with a constant
of proportionality −α < 0 only weakly dependent on gap width
(Supplementary Fig. 4 and Supplementary Section 4). Replacing
effectively Pi→−α[Pi]V as a mean-field variable in the model
eliminates all pillar circulations, yielding a standard quartic LFT
for V (see Supplementary Section 4 for a detailed derivation).
The mean-field dynamics are then governed by the reduced
SDE dV =−(∂Ĥ/∂V) dt +

√
2TdW with effective temperature

T≈Tv+4TpJ 2p /a2p and energy

Ĥ(V)=−J
∑
Vi∼Vj

ViVj+
∑
Vi

(
1
2
aV 2

i +
1
4
bV 4

i

)
which has steady-state probability density p(V) ∝ e−βĤ with
β=1/T , and where a = av − 4J 2p /ap and b = bv . Note that
in the limit a → −∞ and b → +∞ with a/b fixed, the
classical two-state Ising model is recovered by identifying
si=Vi/

√
|a|/b∈{±1}. The reduced coupling constant J relates to

those of the double-lattice model (Jv, Jp) in the thermodynamic
limit as J ≈ Jv − (1/2)αJp (Supplementary Section 4), making
manifest how competition between Jv and Jp can result in
both antiferromagnetic (|Jv| > (1/2)α|Jp|) or ferromagnetic
(|Jv| < (1/2)α|Jp|) behaviour. We estimated βJ , βa and βb
for each experiment by directly fitting the effective one-spin
potential V eff(V | [V ]V )=−4βJV [V ]V + (1/2)βaV 2

+ (1/4)βbV 4

via the log-likelihood logp(V | [V ]V )=−V eff
+const (Fig. 2,

Supplementary Fig. 5 and Supplementary Section 5). These
estimates match those obtained independently using SDE
regression methods (Fig. 2a–c and Supplementary Section 5), and
show the transition from antiferromagnetic interaction (βJ < 0)
to ferromagnetic interaction (βJ > 0) at wcrit (Fig. 2a). As the gap
width increases, the energy barrier to spin change falls (Fig. 2b)
and the magnitude of the lowest energy spin decreases (Fig. 2c)
as a result of weakening confinement within each cavity, visible as
a flattening of the one-spin effective potential V eff (Fig. 2d–f and
Supplementary Fig. 5).

Experiments on lattices of different symmetry groups lend
further insight into the competition between edge currents and bulk
flow. Unlike their square counterparts, triangular lattices cannot
support antiferromagnetic states without frustration. Therefore,
ferromagnetic order should be enhanced in a triangular bacterial
spin lattice. This is indeed observed in our experiments: at
moderate gap size w . 18 µm, we found exclusively a highly
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Figure 2 | Best-fit mean-field LFT model captures the phase transition in the square lattice. a, A sign change of the e�ective interaction βJ signals the
transition from antiferro- to ferromagnetic states. b, The e�ective energy barrier, βa2/(4b) when a<0 and zero when a>0 (Supplementary Section 5),
decreases with the gap size w, reflecting increased susceptibility to fluctuations. c, The spin Vmin minimizing the single-spin potential (Supplementary
Section 5) decreases with w in agreement with the decrease in the r.m.s. vortex spin (Fig. 1k). Each point in a–c represents an average over≥5 movies in
3 µm bins at 1.5 µm intervals; blue circles are from distribution fitting, red diamonds are from SDE regression, and vertical bars indicate standard errors
(Methods). d–f, Examples of the e�ective single-spin potential Ve� conditional on the mean spin of adjacent vortices [V]V . Data (points) and estimated
potential (surface) for three movies with gap widths 6, 10 and 17 µm.
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a,b, Triangular lattices favour ferromagnetic states of either handedness
(Supplementary Movie 4). Vortices are colour-coded by spin. c, At the
largest gap size, bacterial circulation becomes unstable. Scale bar, 50 µm.
d, The spin–spin correlation χ shows strongly enhanced ferromagnetic
order compared with the square lattice (Fig. 1j). Each point represents an
average over≥5 movies in 3 µm bins at 1.5 µm intervals; vertical bars
indicate standard errors (Methods).

robust ferromagnetic phase of either handedness (Fig. 3a,b,d and
Supplementary Movie 4), reminiscent of quantum vortex lattices
in Bose–Einstein condensates30. At comparable gap size, the spin
correlation is approximately four to eight times larger than in the
square lattice. Increasing the gap size beyond 20 µm eventually
destroys the spontaneous circulation within the cavities and a
disordered state prevails (Fig. 3c,d), with a sharper transition
than for the square lattices (Fig. 1j). Conversely, a 1D line lattice
exclusively exhibits antiferromagnetic order as the suspension is
unable to maintain the very long uniform edge currents that
would be necessary to sustain a ferromagnetic state (Supplementary
Fig. 6 and Supplementary Section 6). These results manifest the
importance of lattice geometry and dimensionality for vortex
ordering in bacterial spin lattices, in close analogy with their
electromagnetic counterparts.

Understanding the ordering principles of microbial matter is a
key challenge in active materials design13, quantitative biology and
biomedical research. Improved prevention strategies for pathogenic
biofilm formation, for example, will require detailed knowledge of
how bacterial flows interact with complex porous surface structures
to create the stagnation points at which biofilms can nucleate. Our
study shows that collective excitations in geometrically confined
bacterial suspensions can spontaneously organize in phases of
magnetic order that can be robustly controlled by edge currents.
These results demonstrate fundamental similarities with a broad
class of widely studied quantum systems17,19,30, suggesting that
theoretical concepts originally developed to describe magnetism in
disordered media could potentially capture microbial behaviours in
complex environments. Future studiesmay try to explore further the
range and limits of this promising analogy.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Experiments.Wild-type Bacillus subtilis cells (strain 168) were grown in Terrific
Broth (Sigma). A monoclonal colony was transferred from an agar plate to 25ml of
medium and left to grow overnight at 35 ◦C on a shaker. The culture was diluted
200-fold into fresh medium and harvested after approximately 5 h, when more than
90% of the bacteria were swimming, as visually verified on a microscope. 10ml of
the suspension was then concentrated by centrifugation at 1,500g for 10min,
resulting in a pellet with volume fraction approximately 20% which was used
without further dilution.

The microchambers were made of polydimethyl siloxane (PDMS) bound to a
glass coverslip by oxygen plasma etching. These comprised a square, triangular or
linear lattice of∼18-µm-deep circular cavities with 60 µm between centres, each of
diameter∼50 µm, connected by 4–25-µm-wide gaps for linear and square lattices
(Fig. 1a,e and Supplementary Fig. 6) and 10–25-µm-wide gaps for triangular lattices
(Fig. 3a–c). The smallest possible gap size was limited by the fidelity of the etching.

Approximately 5 µl of the concentrated suspension was manually injected into
the chamber using a syringe. Both inlets were then sealed to prevent external flow.
We imaged the suspension on an inverted microscope (Zeiss, Axio Observer Z1)
under bright-field illumination, through a 40× oil-immersion objective. Movies
10 s in length were recorded at 60 f.p.s. on a high-speed camera (Photron Fastcam
SA3) at 4 and 8min after injection. Although the PDMS lattices were typically∼15
cavities across, to avoid boundary effects and to attain the pixel density necessary
for PIV we imaged a central subregion spanning 6×6 cavities for square lattices,
7×6 cavities for triangular lattices, and 7 cavities for linear lattices (multiple of
which were captured on a single slide).

Fluorescence in Supplementary Movie 3 was achieved by labelling the
membranes of a cell subpopulation with fluorophore FM4-64 following the
protocol of Lushi et al.16 The suspension was injected into an identical triangular
lattice as in the primary experiments and imaged at 5.6 f.p.s. on a spinning-disc
confocal microscope through a 63× oil-immersion objective.

Analysis. For each frame of each movie, the bacterial suspension flow field
u(x ,y , t) was measured by standard particle image velocimetry (PIV) without time
averaging, using a customized version of mPIV (http://www.oceanwave.jp/
softwares/mpiv). PIV subwindows were 16×16 pixels with 50% overlap, yielding
∼150 vectors per cavity per frame. Cavity regions were identified in each movie by
manually placing the centre and radius of the bottom left cavity, measuring vectors
to its immediate neighbours, and repeatedly translating to generate the full grid.
Pillar edges were then calculated from the cavity grid and the gap width (measured
as the minimum distance between adjacent pillars).

The spin Vi(t) of each cavity i at time t is defined as the normalized planar
angular momentum

Vi(t)=
ẑ ·

[∑
(x ,y)i ri(x ,y)×u(x ,y , t)

]
U
∑

(x ,y)i |ri(x ,y)|

where ri(x ,y) is the vector from the cavity centre to (x ,y), and sums run over all
PIV grid points (x ,y)i inside cavity i. For each movie, we normalize velocities by
the root-mean-square (r.m.s.) suspension velocity U =〈u(x ,y , t)2〉1/2, where the
average is over all grid points (x ,y) and all times t , to account for the effects of
variable oxygenation on motility9; we found an ensemble average
E[Ū ]=12.1 µms−1 with s.d. 3.6 µms−1 over all experiments. This definition has
Vi(t)>0 for anticlockwise spin and Vi(t)<0 for clockwise spin. A vortex of
radially independent speed—that is, u(x ,y , t)=uθ̂ , where θ̂ is the azimuthal unit
vector—has Vi(t)=±1; conversely, randomly oriented flow has Vi(t)=0. The
average spin–spin correlation χ of a movie is then defined as

χ=

〈 ∑
i∼jVi(t)Vj(t)∑
i∼j |Vi(t)Vj(t)|

〉

where6i∼j denotes a sum over pairs {i, j} of adjacent cavities and 〈·〉 denotes an
average over all frames. If all vortices share the same sign, then χ=1
(ferromagnetism); if each vortex is of opposite sign to its neighbours, then χ=−1
(antiferromagnetism); if the vortices are uniformly random, then χ=0. Similarly,
the circulation Pj(t) about pillar j at time t is defined as the normalized average
tangential velocity

Pj(t)=

∑
(x ,y)j u(x ,y , t) · t̂j(x ,y)

U
∑

(x ,y)j 1

where t̂j(x ,y) is the unit vector tangential to the pillar, and sums run over PIV grid
points (x ,y)j closer than 5 µm to the pillar j.

Results presented are typically averaged in bins of fixed gap width. All plots
with error bars use 3 µm bins, calculated every 1.5 µm (50% overlap), and bins with
fewer than five movies were excluded. Error bars denote standard error. Bin counts
for square lattices (Figs 1j,k and 2a–c and Supplementary Figs 4 and 7) are 8, 8, 13,
14, 21, 27, 27, 22, 18, 22, 20, 11, 7, 13, 7; bin counts for triangular lattices (Fig. 3d)
are 5, 14, 16, 13, 16, 15, 5, 5, 10, 7; and bin counts for linear lattices (Supplementary
Fig. 6) are 5, 7, 8, 8, 9, 9, 6, 5, 6, 7, 6, 8, 9, 5, 6, 5, 6.
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