Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunnelling microscopy

Abstract

Single-layer FeSe film on SrTiO3(001) has recently come to the fore as an interfacial superconducting system, with a transition temperature that is significantly enhanced with respect to bulk FeSe. The mechanism for this enhancement, and indeed for the superconductivity itself, is therefore of great interest. Although the film has a simple Fermi surface topology, its pairing symmetry is unclear. By using low-temperature scanning tunnelling microscopy, we have systematically investigated the superconductivity of single-layer FeSe/SrTiO3 films, and report a fully gapped tunnelling spectrum and magnetic vortex lattice in the film. Quasi-particle interference patterns reveal scatterings between and within the electron pockets, and put constraints on possible pairing symmetries. By introducing impurity atoms onto the sample, we show that magnetic impurities such as Cr and Mn can locally suppress the superconductivity, but non-magnetic impurities (Zn, Ag and K) do not. Our results indicate that single-layer FeSe/SrTiO3 has a plain s-wave pairing symmetry, with an order parameter that has the same phase on all Fermi surface sections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface topography and superconducting gap spectrum of single-layer FeSe/SrTiO3(001).
Figure 2: Magnetic vortex states of single-layer FeSe/SrTiO3(001).
Figure 3: QPI mappings of single-layer FeSe/SrTiO3(001).
Figure 4: QPI intensity analysis for different scattering channels.
Figure 5: In-gap states induced by magnetic impurities Cr and Mn.
Figure 6: Absence of the in-gap states on non-magnetic impurities (Zn, Ag and K).

Similar content being viewed by others

References

  1. Hsu, F. C. et al. Superconductivity in the PbO-type structure FeSe. Proc. Natl Acad. Sci. USA 105, 14262–14264 (2008).

    Article  ADS  Google Scholar 

  2. Wang, Q. Y. et al. Interface induced high temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012).

    Article  ADS  Google Scholar 

  3. Liu, D. F. et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nature Commun. 3, 931 (2012).

    Article  Google Scholar 

  4. He, S. L. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nature Mater. 12, 605–610 (2013).

    Article  ADS  Google Scholar 

  5. Tan, S. Y. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nature Mater. 12, 634–640 (2013).

    Article  ADS  Google Scholar 

  6. Peng, R. et al. Measurement of an enhanced superconducting phase and a pronounced anisotropy of the energy gap of a strained FeSe single layer in FeSe/Nb: SrTiO3/KTaO3 heterostructures using photoemission spectroscopy. Phys. Rev. Lett. 112, 107001 (2014).

    Article  ADS  Google Scholar 

  7. Peng, R. et al. Tuning the band structure and superconductivity in single-layer FeSe by interface engineering. Nature Commun. 5, 5044 (2014).

    Article  Google Scholar 

  8. Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 . Nature 515, 245–248 (2014).

    Article  ADS  Google Scholar 

  9. Zhang, W. H. et al. Direct observation of high-temperature superconductivity in one-unit-cell FeSe films. Chin. Phys. Lett. 31, 017401 (2014).

    Article  ADS  Google Scholar 

  10. Li, Z. et al. Molecular beam epitaxy growth and post-growth annealing of FeSe films on SrTiO3: A scanning tunneling microscopy study. J. Phys. Condens. Matter 26, 265002 (2014).

    Article  Google Scholar 

  11. Ge, J. F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 . Nature Mater. 14, 285–289 (2015).

    Article  ADS  Google Scholar 

  12. Mazin, I. I. et al. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−xFx . Phys. Rev. Lett. 101, 057003 (2008).

    Article  ADS  Google Scholar 

  13. Hirschfeld, P. J. et al. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  14. Fang, C. et al. Robustness of s-wave pairing in electron-overdoped A1−yFe2−xSe2 (A = K, Cs). Phys. Rev. X 1, 011009 (2011).

    Google Scholar 

  15. Zhou, Y. et al. Theory for superconductivity in (Tl, K)FexSe2 as a doped Mott insulator. Europhys. Lett. 95, 17003 (2011).

    Article  ADS  Google Scholar 

  16. Yang, F. et al. Fermiology, orbital order, orbital fluctuations, and Cooper pairing in iron-based superconductors. Phys. Rev. B. 88, 100504 (2013).

    Article  ADS  Google Scholar 

  17. Maier, T. A. et al. d-wave pairing from spin fluctuations in the KxFe2−ySe2 superconductors. Phys. Rev. B 83, 100515 (2011).

    Article  ADS  Google Scholar 

  18. Wang, F. et al. The electron pairing of KxFe2−ySe2 . Europhys. Lett. 93, 57003 (2011).

    Article  ADS  Google Scholar 

  19. Mazin, I. I. Symmetry analysis of possible superconducting states in KxFeySe2 superconductors. Phys. Rev. B 84, 024529 (2011).

    Article  ADS  Google Scholar 

  20. Yin, Z. P., Haule, K. & Kotliar, G. Spin dynamics and orbital-antiphase pairing symmetry in iron-based superconductors. Nature Phys. 10, 845–850 (2014).

    Article  ADS  Google Scholar 

  21. Hu, J. P. Iron-based superconductors as odd-parity superconductors. Phys. Rev. X 3, 031004 (2013).

    Google Scholar 

  22. Balatsky, A. V. et al. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

    Article  ADS  Google Scholar 

  23. Yazdani, A. et al. Probing the local effects of magnetic impurities on superconductivity. Science 275, 1767–1770 (1997).

    Article  Google Scholar 

  24. Pan, S. H. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ . Nature 403, 746–750 (2000).

    Article  ADS  Google Scholar 

  25. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ . Science 297, 1148–1157 (2002).

    Article  ADS  Google Scholar 

  26. Wang, Q. H. et al. Quasiparticle scattering interference in high-temperature superconductors. Phys. Rev. B 67, 020511 (2003).

    Article  ADS  Google Scholar 

  27. Hanaguri, T. et al. Coherence factors in a high-Tc cuprate probed by quasi-particle scattering off vortices. Science 323, 923–926 (2009).

    Article  ADS  Google Scholar 

  28. Bang, J. et al. Atomic and electronic structures of single-layer FeSe on SrTiO3(001): The role of oxygen deficiency. Phys. Rev. B 87, 220503 (2013).

    Article  ADS  Google Scholar 

  29. Song, C. L. et al. Direct observation of nodes and twofold symmetry in FeSe superconductor. Science 332, 1410–1413 (2011).

    Article  ADS  Google Scholar 

  30. Hess, H. F. et al. Vortex-core structure observed with a scanning tunneling microscope. Phys. Rev. Lett. 64, 2711–2714 (1990).

    Article  ADS  Google Scholar 

  31. Hanaguri, T. et al. Scanning tunneling microscopy/spectroscopy of vortices in LiFeAs. Phys. Rev. B 85, 214505 (2012).

    Article  ADS  Google Scholar 

  32. Allan, M. P. et al. Anisotropic energy gaps of iron-based superconductivity from intraband quasiparticle interference in LiFeAs. Science 336, 563–567 (2012).

    Article  ADS  Google Scholar 

  33. Hanaguri, T. et al. Unconventional s-wave superconductivity in Fe(Se, Te). Science 328, 474–476 (2010).

    Article  ADS  Google Scholar 

  34. Chi, S. et al. Sign inversion in the superconducting order parameter of LiFeAs inferred from Bogoliubov quasiparticle interference. Phys. Rev. B 89, 104522 (2014).

    Article  ADS  Google Scholar 

  35. Onari, S. et al. Violation of Anderson’s theorem for the sign-reversing s-wave state of iron-pnictide superconductors. Phys. Rev. Lett. 103, 177001 (2009).

    Article  ADS  Google Scholar 

  36. Kariyado, T. et al. Single impurity problem in iron-pnictide superconductors. J. Phys. Soc. Jpn 79, 083704 (2010).

    Article  ADS  Google Scholar 

  37. Grothe, S. et al. Bound states of defects in superconducting LiFeAs studied by scanning tunneling spectroscopy. Phys. Rev. B 86, 174503 (2012).

    Article  ADS  Google Scholar 

  38. Yang, H. et al. In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01) as revealed by scanning tunneling spectroscopy. Nature Commun. 4, 2749 (2013).

    Article  Google Scholar 

  39. Zhu, J. X. et al. Local electronic structure of a single nonmagnetic impurity as a test of the pairing symmetry of electrons in (K, Tl)FexSe2 superconductors. Phys. Rev. Lett. 107, 167002 (2011).

    Article  ADS  Google Scholar 

  40. Kontani, H. & Onari, S. Orbital-fluctuation-mediated superconductivity in iron pnictides: Analysis of the five-orbital Hubbard–Holstein model. Phys. Rev. Lett. 104, 157001 (2010).

    Article  ADS  Google Scholar 

  41. Huang, D. et al. Revealing the empty-state electronic structure of single-unit-cell FeSe/SrTiO3 . Phys. Rev. Lett. 115, 017002 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank X.-G. Gong and D.-H. Lee for useful discussions. This work is supported by the National Science Foundation of China, and National Basic Research Program of China (973 Program) under the grant No. 2012CB921402, No. 2011CBA00112, and No. 2011CB921802.

Author information

Authors and Affiliations

Authors

Contributions

The sample growth and STM measurements were performed by Q.F., W.H.Z. and T.Z. The data analysis was performed by Q.F., X.L., J.P.H., T.Z. and D.L.F. T.Z. and D.L.F. coordinated the whole work and wrote the manuscript. All authors have discussed the results and the interpretation.

Corresponding authors

Correspondence to T. Zhang or D. L. Feng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5729 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Zhang, W., Liu, X. et al. Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunnelling microscopy. Nature Phys 11, 946–952 (2015). https://doi.org/10.1038/nphys3450

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3450

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing