Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast photonic crystal nanocavity laser

An Erratum to this article was published on 01 August 2006

Abstract

Spontaneous emission is not inherent to an emitter, but rather depends on its electromagnetic environment. In a microcavity, the spontaneous emission rate can be greatly enhanced compared with that in free space. This so-called Purcell effect can dramatically increase laser modulation speeds, although to date no time-domain measurements have demonstrated this. Here we show extremely fast photonic crystal nanocavity lasers with response times as short as a few picoseconds resulting from 75-fold spontaneous emission rate enhancement in the cavity. We demonstrate direct modulation speeds far exceeding 100 GHz (limited by the detector response time), already more than an order of magnitude above the fastest semiconductor lasers. Such ultrafast, efficient, and compact lasers show great promise for applications in high-speed communications, information processing, and on-chip optical interconnects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron micrographs of fabricated structures.
Figure 2: Spectra of the single-defect photonic crystal laser.
Figure 3: Time-resolved photoluminescence decay curves measured by streak camera.
Figure 4: Response of photonic crystal laser.
Figure 5: Direct modulation of a single-defect photonic crystal nanocavity laser.

Similar content being viewed by others

References

  1. Purcell, E. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  2. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  3. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  Google Scholar 

  4. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    Article  ADS  Google Scholar 

  5. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    Article  ADS  Google Scholar 

  6. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  7. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006).

    Article  ADS  Google Scholar 

  8. Goldstein, E. & Meystre, P. in Spontaneous Emission and Laser Oscillations in Microcavities (eds Yokoyama, H. & Ujihara, K.) 1–46 (CRC, New York, 1995).

    Google Scholar 

  9. Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

    Article  ADS  Google Scholar 

  10. Happ, T. D. et al. Enhanced light emission of In×Ga12×As quantum dots in a two-dimensional photonic-crystal defect microcavity. Phys. Rev. B 66, 041303 (2002).

    Article  ADS  Google Scholar 

  11. Gibbs, H. M. in Optics of Semiconductors and Their Nanostructures (eds Kalt, H. & Hetterich, M.) 189–208 (Springer, Berlin, 2004).

    Book  Google Scholar 

  12. Cheng, W. H. et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 96, 117401 (2006).

    Article  ADS  Google Scholar 

  13. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  14. Loncar, M., Yoshie, T., Scherer, A., Gogna, P. & Qiu, Y. Low-threshold photonic crystal laser. Appl. Phys. Lett. 81, 2680–2682 (2002).

    Article  ADS  Google Scholar 

  15. Park, H. G. et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004).

    Article  ADS  Google Scholar 

  16. Baba, T. et al. Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature. Appl. Phys. Lett. 85, 3889–3891 (2004).

    Article  Google Scholar 

  17. Yoshie, T., Loncar, M. & Scherer, A. High frequency oscillation in photonic crystal naolasers. Appl. Phys. Lett. 84, 3543–3545 (2004).

    Article  ADS  Google Scholar 

  18. Deng, H. et al. Transverse and temporal mode dependence on mirror contrast in microcavity lasers. J. Quantum Electron. 31, 2026–2036 (1995).

    Article  ADS  Google Scholar 

  19. Deng, H., Deng, Q. & Deppe, D. G. Very small oxide-confined vertical-cavity surface-emitting lasers with a bulk active region. Appl. Phys. Lett. 70, 741–743 (1997).

    Article  ADS  Google Scholar 

  20. Coldren, L. A. & Corzine, S. W. Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

    Google Scholar 

  21. Chang, C., Chrostowski, L. & Chang-Hasnain, C. J. Injection-locking of vertical cavity surface emitting lasers: Theory and experiments. J. Sel. Top. Quantum Electron. 9, 1386–1392 (2003).

    Article  Google Scholar 

  22. Lear, K. L. et al. Small and large signal modulation of 850 nm oxide-confined vertical-cavity surface-emitting lasers. Advances in Vertical Cavity Surface Emitting Lasers in Trends in Optics and Photonics Series 15, 69–74 (1997).

    Google Scholar 

  23. Yamamoto, Y., Machida, S. & Bjork, G. Microcavity semiconductor laser with enchanced spontaneous emission. Phys. Rev. A 44, 657–668 (1991).

    Article  ADS  Google Scholar 

  24. Song, B., Noda, S., Asano, T. & Akahane, Y. Ultra-high Q photonic double-heterostructure nanocavity. Nature Mater. 4, 2007–2010 (2005).

    Google Scholar 

  25. Altug, H. & Vuckovic, J. Two-dimensional coupled photonic crystal resonator arrays. Appl. Phys. Lett. 84, 161–163 (2004).

    Article  ADS  Google Scholar 

  26. Altug, H. & Vuckovic, J. Photonic crystal nanocavity array laser. Opt. Express 13, 8820–8828 (2005).

    Article  ADS  Google Scholar 

  27. Schmidt, R. et al. Fabrication of genuine single-quantum-dot light-emitting diodes. Appl. Phys. Lett. 88, 121115 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the MARCO IFC Center, NSF Grant Nos ECS-0424080 and ECS-0421483, the MURI Center for Photonic Quantum Information Systems (ARO/DTO Program No. DAAD19-03-1-0199), as well as Intel (H.A.) and NDSEG (D.E.) Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Altug.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nature Phys 2, 484–488 (2006). https://doi.org/10.1038/nphys343

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys343

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing