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Polar pattern formation in driven filament systems
requires non-binary particle collisions
Ryo Suzuki1, Christoph A.Weber2,3, Erwin Frey3* and Andreas R. Bausch1*
From the self-organization of the cytoskeleton to the
synchronous motion of bird flocks, living matter has the
extraordinary ability to behave in a concerted manner1–4. The
Boltzmann equation for self-propelled particles is frequently
used in silico to link a system’s meso- or macroscopic
behaviour to the microscopic dynamics of its constituents5–10.
But so far such studies have relied on an assumption of
simplified binary collisions owing to a lack of experimental
data suggesting otherwise. We report here experimentally
determined binary-collision statistics by studying a recently
introduced molecular system, the high-density actomyosin
motility assay11–13. We demonstrate that the alignment induced
by binary collisions is too weak to account for the observed
ordering transition. The transition density for polar pattern
formation decreases quadratically with filament length,
indicating that multi-filament collisions drive the observed
ordering phenomenon and that a gas-like picture cannot
explain the transition of the system to polar order. Our
findings demonstrate that the unique properties of biological
active-matter systems require a description that goes well
beyond that developed in the framework of kinetic theories.

Unlike animals that possess interactions such as spatial
cognition or hierarchical dispositions14–16, the interactions of
reconstituted11–13,17,18 or synthetic19–22 model systems stem purely
from physical interactions among the constituents. Although
weak alignment forces have been proposed to be sufficient for the
polar ordering transitions11, no experimental data are available
that quantify the interaction rules between the constituents.
Owing to the lack of experimental data for such interaction rules,
microscopic studies assume either an average rule over the particles
in the neighbourhood23,24, or that all binary interactions lead to
perfect polar alignment5.

Here we provide the angle-resolved binary-collision statistics
for a paradigmatic experimental active system; the actomyosin
motility assay. The experimental system consists of only two main
components: actin filaments and non-processive motor proteins
heavymeromyosin (HMM; refs 11–13,25). Actin filaments move on
a lawn of HMM by consumption of adenosine triphosphate (ATP)
at a constant speed of approximately 4 µms−1, which is ensured in
the experiment by using high ATP concentrations. The orientation
of a single filament motion is determined solely by the head, and
the motion itself exhibits no long-term directionality, where the
randomness of the system is generated by the pushing of themotors.

To obtain the binary-collision statistics, the experiments are
conducted under dilute conditions with filament densities between
0.005ρc and 0.06ρc, where ρc ≈ 5 filaments µm−2 is the critical
density for the disorder–order transition11. Only short filaments

with L=2–5µm are considered, to ensure that collisions are binary
and also that the collision angles can be unambiguously defined,
which becomes difficult for longer filaments owing to the intrinsic
bending of the filaments. When two filaments encounter each
other, for the majority of the collision events the filaments readily
cross each other. Despite the frequent crossing events, we observe
various tendencies in the binary collisions: polar alignment, anti-
polar alignment and events where the filament orientation hardly
changes (Fig. 1a–c). To quantify these tendencies we measure the
incoming angle θ12=θ1–θ2 along with the outgoing angle θ ′12=θ ′1–θ ′2
(Fig. 1d; see Methods). Binary collisions alone are extracted and
all non-binary collisions are neglected. All filament densities in the
dilute regime demonstrate similar quantitative behaviour for the
experimentally obtained binary-collision statistics θ ′12(θ12) (Fig. 2a),
where unaffected collisions, θ ′12=θ12, are represented by a diagonal
line in the diagram. The similarity in the behaviours indicates that
there are no significant spatial correlations between the filaments
for the dilute densities considered.

The distribution P(θ12) of the incoming angle exhibits an
asymmetric shape which is consistent with the Boltzmann
scattering cylinder for rods8,9 when considering the assumption
of slender rods (Supplementary Information), which gives
P(θ12)∝Γ (θ12)=2Lv0| sin(θ12/2)| · | sinθ12| (see red line in Fig. 2b).
Here, L denotes the filament length and v0 is the filament speed.
The limiting case of slender rods is justified as actin filaments have
a length of L=2–5µm and a diameter of d≈8 nm. The Boltzmann
scattering cylinder Γ describes the frequency of collisions between
propelled particles of constant speed as a function of the relative
angle θ12, which is derived by geometric considerations. Owing
to the large aspect ratio, incoming angles close to 0◦ and 180◦ are
less likely for slender rods, and the corresponding distribution
is asymmetric.

Averaging the experimentally obtained binary-collision statistics
θ ′12(θ12), we see that although most events for incoming angles
θ12>80◦ are indeed largely unaffected by the collision, at highly
acute θ12 a clear polar bias can be recognized: θ ′12 is smaller than
θ12 (Fig. 2c). The distribution of θ ′12(θ12) is significantly skewed
towards polar outcomes for highly acute θ12 and anti-polar outcomes
for θ12 close to 180◦ (Fig. 2d). Because of this strong skewness, all
data points of the experimental binary-collision statistics, and not
just the average and standard deviation, are required to make a
proper prediction on the existence of transition to polar order. Using
the average of the collision statistics can lead to the loss of important
information concerning the collision events, and ultimately cause a
wrong prediction on the existence of polar order7.

To connect the microscopic dynamics to the meso- or
macroscopic pattern formation and ordering transition in
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active systems, the Boltzmann equation for propelled particles has
been successfully applied5–10. The Boltzmann equation describes the
mesoscopic particle motion and maps the pre-collision states onto
the post-collision states, which enables the analytical prediction
of the onset to polar order. It determines the time evolution of
the one-particle distribution function f (r, θ , t), where r are the
coordinates, θ is the particle orientation and t is time:

∂t f (r,θ , t)+v0v̂(θ) ·∇f (r,θ , t)=Dθ∂
2
θ
f +C[f (2)] (1)

The streaming term, v0v̂(θ) ·∇f (r,θ , t), accounts for the movement
of particles with velocity v0v̂(θ), where v0 denotes the constant
speed and v̂(θ)= (cos θ , sin θ). Angular fluctuations are described
as Dθ∂

2
θ
f (see refs 20,26), with Dθ denoting the angular diffusion

constant. The collision integral, C[f (2)], captures the effect of binary
filament collisions and the filament geometry. It consists a two-
particle density f (2)(r,θ1,θ2, t), which can be written in the absence
of correlations as f (2)(r, θ1, θ2, t)= f (r, θ1, t)f (r, θ2, t). The collision
integral C[f (2)] plays a key role as the experimentally obtained data
enter this term, which determines whether a transition to polar
order exists or not. C[f (2)] can be divided into a loss (−) and a gain
(+), C[f (2)]=C−[f (2)]+C+[f (2)], (ref. 7):

C−[f (2)]=−
∫ π

−π

dθ ′Γ (θ12)f (2)(θ ,θ ′) (2)

C+[f (2)]=
∫ π

−π

dθ1
∫ π

−π

dθ2
1
2

2∑
j=1

Γ (θ12)f (2)(θ1,θ2)

×

∫
∞

−∞

dηj pj(ηj|θ12)

×

∞∑
m=−∞

δ(θj+ηj−θ+2πm) (3)

where we omitted time and space dependencies for brevity.
The gain and loss contributions are derived from integrating
over all possible pre-collision orientations of the particles. A
collision occurs with a frequency given by the Boltzmann collision
cylinder for rods, Γ (θ12), and changes the orientation according
to θj→θj+ηj(θ12)=θ

′

j , j ∈ {1, 2}, where ηj denotes the angular
change of the jth particle orientation. For a given relative pre-
collision angle θ12, the orientation of particle j changes by ηj(θ12)
with probability pj(ηj|θ12)dηj. The experimental scattering statistics
(Fig. 2a) is equivalently expressed in terms of pj(ηj|θ12) (Fig. 3a,b;
Supplementary Information). If the filaments are indistinguishable,
two important symmetry properties of pj need to be satisfied:
particle exchange symmetry p1(η1|θ12)=p2(η2|−θ12) and mirror
symmetry p1(−η1|θ12)= p1(η1| − θ12), where the same argument
applies for p2. Indeed both are obeyed in the experimentally
obtained binary-collision statistics of the actomyosin motility assay
system (Fig. 3c,d and Supplementary Information). This indicates
that experimental uncertainties, such as the narrow filament length
distribution, do not influence or bias the binary-collision statistics.

Equations (1)–(3) are now analysed in terms of Fourier modes,
where all Fourier coefficients are determined by the comprehensive
binary-collision statistics pj (ref. 7). The Fourier representation is
a good starting point to derive the homogeneous and linearized
equations for the coarse-grained momentum g, ∂tg = νg. The
calculation also yields the coefficients ν in terms of pj. The
equations for the momentum become unstable for ν > 0, thus the
transition density of polar order corresponds to ν= 0 (refs 5,26).
Specifically, the coefficient ν =−Dθ + ν̄[pj] ρv0L/π, where ν̄[pj]
contains the comprehensive binary-collision statistics pj (Fig. 3a,b).
See Supplementary Information for the detailed mathematical
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Figure 1 | Experimental binary collisions. a–c, Time traces of representative
experimental binary collisions. a, Polar alignment. b, Anti-polar alignment.
c, Absence of alignment. Scale bar, 2 µm. d, Definition of scattering
geometry. Collisions follow the general form (θ1,θ2)→(θ1+η1,θ2+η2).

expressions. Importantly, for the onset of polar order (ν>0), ν̄ must
be positive.

Using the experimental data (Figs 2b and 3a,b), we find
ν̄≈−0.094 for binning of 1θ12 = 15◦ and 1η = 15◦ (see
Supplementary Information for details on the computation of
ν̄ using experimental data). The negative sign of ν̄ computed
from the experimental data is robust against binning of η and θ
(Supplementary Information). This implies that the binary-collision
description is insufficient to explain the ordering transition in the
experimental system for any density ρ, and the isotropic state is
linearly stable. This statement is independent of the value of the
rotational diffusion constantDθ as it opposes the formation of polar
order, expressed by a negative sign in ν. We test the consistency
of our results with analytic predictions for a well-established
theoretical model system where rods interact by half-angle
alignment (ηj = θi/2− θj/2; refs 5,6), which results in ν̄ ≈ 1.008
(Supplementary Information), agreeing well with refs 6,7.

Although we show that polar order cannot be reached when
neglecting angular correlations (molecular chaos), small locally
aligned filament clusters could still trigger the onset of polar
order by binary collisions7,27. To model such weak orientational
correlations we write f (2)(r, θ1, θ2, t) = χ(θ12)f (r, θ1, t)f (r, θ2, t),
where χ(θ12) characterizes the precursor angular correlations; for
χ=1, angular correlations are absent, leading to the assumption of
molecular chaos. Led by recent studies of angular correlations in
a self-propelled particle system7, we emulate angular correlations
as χ(θ12)=1+A/θ12, where A is a free parameter that determines
the strength of orientational correlations. ForA=0, correlations are
absent, whereas large A values correspond to small, locally aligned
filament clusters. We find that using different strengths of angular
pair-correlations A does not change the negative sign of the kinetic
coefficient (Supplementary Information). This implies that even a
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Figure 2 | Experimentally obtained binary-collision statistics for the actomyosin motility assay. a, Scatter plot of θ ′12(θ12). Red open squares and blue
solid circles represent ρlow=0.005ρc and ρhigh=0.06ρc, respectively. Green solid line represents the collisions that are una�ected (θ ′12=θ12). Here, the
numbers of collisions investigated are Nlow= 1, 113 and Nhigh=646. b, Incoming angle statistics. Red solid line corresponds to the Boltzmann scattering
cylinder for rods with slender-rod assumption L�d. Error bars:±

√
Nbin. c, Mean plot of a via binning by θ12. Green dashed line represents una�ected

collisions. Indication of weak polar bias where θ ′12<θ12 for highly acute θ12. Error bars: Standard deviation. d, Skewness of θ ′12 distribution with respect to
θ12. Positive and negative skewness correspond to polar and anti-polar alignment, respectively. Skewness of 2 corresponds to an exponential distribution.
In b–d, ρ=ρlow.

collection of pre-formed weakly aligned filaments, which collide
accordingly to the experimental data pj (Fig. 3a,b), cannot cause the
system to order. It effectively augments the dealigning contributions,
causing ν̄ to decrease with increasing magnitude of χ . We conclude
that, independent of the assumptions of zero noise and molecular
chaos, the pattern formation observed in the motility assay cannot
be explained solely by a succession of binary filament collisions.

The transition to polar order seen in the experiment can,
however, be understood by multi-particle collisions: Already for
densities one order of magnitude below the transition density,
binary collisions are rare, characterized by the experimentally
determined ratio R=nbinary/nall of binary collisions nbinary to all
collisions nall (Fig. 4a). At ρ=0.06ρc less than 10% of all collisions
are binary. Thus, for densities close to the transition density ρc,
filaments predominantly encounter multi-particle collisions.

More importantly, multi-filament collisions are essential for the
transition to polar order, which is manifest in the dependence of the
transition density on the filament length. At a given filament density
ρ≈16 filaments µm−2, long filaments with length Llong=4–7µm are
able to form polar structures (Fig. 4b), whereas an assay of short

filaments with length Lshort=0.5–3µm remain in the isotropic state
(Fig. 4c). Yet, at a higher concentration ρ≈30 filaments µm−2, short
filaments are able to create clusters. At this higher concentration
of filaments, the long-filament system is already in the density-
wave regime11.

As the exact nature of the length dependence on the transition
densityρc indicates themicroscopicmechanismof the transition, we
systematically vary the average filament lengths from 2–10µm and
determine ρc (Fig. 4d). For a gas of propelled particles, where binary
collisions are dominant (equations 1–3), the transition density is
defined by ν = 0; hence, ρc is expected to scale with 1/L (see
Supplementary Equation 8). Thus, in this slender-rod limit, the
collision probability is determined only by the length of the collision
partner. Yet, we observe here an approximately quadratic behaviour
for ρc(L) (Fig. 4d), ruling out the gas-like picture for this system.
At the transition density ρc, the total number of simultaneous
collisions for a filament of length L is constant: ρcL2

≈ 200–300
(Fig. 4d inset). Importantly, this implies that it is the total number
of simultaneous collisions and not the filament length itself which
defines the order transition.
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The presented results challenge our current understanding on
the polar ordering transition in active systems. Such polar ordering
transition is not determined purely by the number of particles in
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Figure 4 | Evidence of multi-filament collisions. a, Ratio R=nbinary/nall of
binary collisions nbinary to all collisions nall. Grey shaded region indicates the
ordered phase. b–d, Filament length dependence on transition density ρc.
b, At filament density ρ≈ 16 filaments µm−2, long filaments form polar
ordered active clusters. White arrows show examples of cluster motion
direction. c, For short filaments at the same density as b, no polar order
emerges. In b,c, scale bars are 100 µm. d, Log–log plot of ρc(L), showing an
approximately quadratic dependence. Solid line shows best fit of L1.71. Error
bars: Standard deviation for both ρc and L. Inset: Degree of multi-filament
collisions ρcL2 against filament length L.

the system, but rather by the degree of multi-particle collisions.
Systems governed by such features could well be described by
kinetic models that incorporate collisions of arbitrary numbers
of partners28,29 or go beyond Boltzmann’s mean-field assumption
of molecular chaos30. The uniqueness of the actomyosin motility
assay, which enables access to all microscopic interactions and
parameters, sets a quantitative basis for further development of
our understanding of ordering phenomena in this diverse class
of materials.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Assay preparation.We used standard protocols to prepare the actin filaments and
heavy meromyosin (HMM) motor proteins. Fluorescently labelled filaments
stabilized with Alexa Fluor 488 phalloidin were used to visualize filaments with a
fluorescence microscope. Flow chambers built from nitrocellulose-coated
coverslips were incubated with HMM (0.05 µgml−1). Bovine serum albumin was
used to passivate the surfaces inside the chamber after the incubation with HMM,
then a dilute solution of actin filaments (binary collision: approximately
10–100 nM, filament length dependency: approximately 3–10µM) was introduced.
We added 2mM ATP to enable the HMM to drive the filaments and a standard
antioxidant buffer supplement was used to prevent oxidation of the fluorophore.
Filament length was adjusted by shearing. For details of protein and assay chamber
preparations, refer to Supplementary Information.

Imaging. A Leica DMI 6000B inverted microscope was used to acquire data.

A×100 oil objective (NA: 1.4) was used for the binary-collision experiments and a
×40 oil objective (NA: 1.25) for the filament length dependency experiment.
Images of resolution 1,344×1,024 pixels at a time resolution of 0.13 s were
captured with a charge-coupled device (CCD) camera (C4742-95, Hamamatsu)
attached to a×1 (for binary collisions) and×0.35 (for filament length dependency)
camera mount.

Data analysis. For the binary-collision experiments, filaments are identified by
labelling connected components in the binary images and then are skeletonized,
using Matlab. A cubic spline fit is applied to the skeletonized filaments to obtain
coordinates for the filament contour. The coordinates for the filament head are
used to determine θ1,2 and θ ′1,2. A collision is defined from when two filaments
touch each other, until they are separated. Any collision events involving three or
more filaments are classified as non-binary. See Supplementary Information for
more details.
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