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used by Ried and colleagues3. An intriguing 
open question is whether ordinary quantum 
mechanics is the only physical theory that 
allows us to discover such dependencies 
through ideal measurements. Luckily, the 
tools to tackle this question are already in 
place: both the framework of causal networks8 
and the notion of ideal measurement9,10 
have been recently extended from quantum 
mechanics to arbitrary physical theories.

Another natural question is: what is 
special about those causal dependencies that 
can be characterized just in terms of ideal 
measurements? In quantum mechanics, Ried 
and colleagues3 provide the answer when 
the causal dependence is a probabilistic 
mixture of common cause and cause–effect 
relationships, showing that quantum 
coherence and entanglement are necessary 

features. The case of more general causal 
dependencies, as well as correlations in 
quantum networks containing more than 
two measurements, remains a subject of 
future research. Even more broadly, the 
ideas introduced by Ried et al.3 could find 
applications in the study of exotic quantum 
gravity scenarios featuring a non-fixed 
causal structure11–13. In all of these cases, the 
abundance of open questions, as well as the 
rapid emergence of new counterintuitive 
results, reveals that causality in quantum 
mechanics is a much richer and more 
surprising area than previously thought. � ❐
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Drizzle syrup over your pancakes and 
you may notice a coil developing where 
the fluid thread hits the surface. This 
well-known phenomenon — the ‘liquid 
rope-coil effect’ — results from the 
interplay between the syrup’s viscosity and 
gravitational and inertial forces.

Similarly, a viscous liquid rope 
falling onto a moving surface (or from a 
moving nozzle) can produce a pattern 
that deviates from a straight line. In 
fact, several different patterns have 
been observed for such systems — 
nicknamed fluid-mechanical sewing 
machines because the generated motifs 
resemble common stitch patterns. 
Pierre-Thomas Brun and colleagues 
have now come up with a model 
that reproduces the experimentally 
obtained patterns and predicts 
additional features (P-T. Brun et al., 
Phys. Rev. Lett., in the press; preprint at 
http://arxiv.org/abs/1410.5382).

The typical paths traced out by a 
viscous liquid thread on a moving belt 
are loops (translated coils), alternating 
loops, meanders and straight lines. Their 
periodicities come from the intrinsic 
frequencies of the tracing processes, 
which have been found to be multiples 
of the coiling frequency for the static 
(non-moving surface) case. Brun et al. 
performed numerical simulations of the 
sewing machine, taking viscosity and 
gravitation into account, but with inertia 
artificially switched off. Remarkably, 
the resulting phase diagram (with 
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dimensionless nozzle height and surface 
speed as phase variables) contained all 
possible types of pattern, suggesting 
that inertial forces weren’t playing a 
significant role.

This conclusion prompted the authors 
to devise a geometrical model in which 
the path drawn by the falling liquid rope 
was described by a set of equations for the 
position of the contact point and the local 
curvature of the path. The equations arise 
from considering the shape of the pendant 
thread (dictated by gravity and viscosity) 
and the coupling between the fluid and the 
moving surface.

The solutions of the geometrical 
model matched the outcomes of the 
full simulations very well. In addition, 
the authors discovered a new pattern 
with coils wide apart from one another 
(the ‘W-pattern’), as well as hysteretic 
effects: the transitions between different 
regimes when changing the surface 
velocity occurred at different speeds for 
acceleration and deceleration.

Apart from uncovering the physical 
processes underlying fluid-mechanical 
sewing machines, the findings of Brun et al. 
are relevant to a variety of industrial 
applications like the manufacture of 
non-woven fabrics or the automated 
production of cake decorations. They 
also enable an understanding — or 
even simulation — of the drip painting 
technique used by Jackson Pollock.
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