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Wheat from the chaff
Mathematical modelling is almost as 
old as science. But the nature of applied 
mathematics is changing — in physics 
as well as in biology and medicine, 
engineering and even economics. The 
rise of powerful computation has made it 
possible to create and study models with 
unprecedented complexity; and to gather 
equally massive data to use in testing 
those models. 

But a model with 30 or 100 free 
parameters has enormous flexibility. Can it 
really ever be tested? Or can a sufficiently 
clever scientist always manage to adapt it 
to the data? Science has always worked by 
putting creative hypotheses and ideas to 
the experimental test. In the face of high-
dimensional modelling, could this practice 
run into trouble?

I’ve wondered about this question in the 
context of recent efforts to build models 
of whole economies. Physicists have been 
influential in doing so, making significant 
advances over traditional economic models. 
But a lingering worry remains — how can 
you trust a model with a dozen or more 
variables, and avoid fooling yourself about 
its explanatory capacity?

Well, physicist Mark Transtrum and 
colleagues may have found an answer — 
or, at least, they make an encouraging 
suggestion (M. K. Transtrum et al., preprint 
at http://arxiv.org/abs/1501.07668; 2015). 
The problem may not be as vexing as it 
seems, they argue, because many, if not 
most, high-dimensional models, as well as 
real processes, are ‘sloppy’ — that is, their 
behaviour depends on very few parameters 
or details, and the rest are mostly irrelevant. 
And, they suggest, this isn’t just a happy 
accident; it happens for deep reasons.

Physicists understand well enough how 
complexity often reduces to simplicity; 
lots of physics, after all, relies on low-
dimensional effective models and theories 
that work despite ignoring masses of 
microscopic detail. It’s true in statistical 
physics, thermodynamics or fluid dynamics, 
and this seeming miracle rests on well 
understood theory — the continuum limit, 
or renormalization group arguments. 
Cartoon theories, Transtrum and colleagues 
note, can be useful even if they ignore 
a lot — as long as they get a few crucial 
things right.

For example, liquids like water or 
petroleum differ completely at the 
molecular level, yet on macroscopic 

scales flow in patterns determined only 
by viscosity and density. So too with 
models of collective behaviour such as 
magnetism: many microscopic models 
yield very similar, and very simple, 
macroscopic behaviour.

In other words, sloppy theories work 
well surprisingly often. As Transtrum 
and colleagues argue, this pattern reaches 
right across science. They analysed a set 
of models running from radioactive decay 
to systems biology, using information 
theory to characterize the sensitivity of 
these models to the variation of particular 
parameters. In every case, they found 
that the distribution of the magnitudes 
of eigenvalues — reflecting the relevance 
of different parameters — fell off roughly 
log-linearly, with each parameter being less 
important than the previous by a constant 
factor. Quite generally, a few parameters (or 
combinations thereof) tend to be of much 
greater importance than all others.

That’s an empirical result. But the authors 
use an elegant geometric interpretation of 
statistics to argue that we should actually 
expect this. High-dimensional theories, in 
a certain sense, tend to have a low effective 
dimension, which is closely associated 
with the few important or ‘stiff ’ parameter 
combinations. Their analysis also leads 
to a new technique for generating low-
dimensional, reduced models from initial 
models of much higher dimension — a 
recipe for identifying the emergent variables 
of greatest interest.

How useful this particular technique 
will be in practice remains unclear. But the 
general perspective has potentially huge 
implications. It may, for a start, explain a 
number of otherwise puzzling examples of 
modelling good luck. Why, for example, 
does the simple technique of principal 
component analysis work so well in 
applications ranging from molecular biology 
to demographics? Given a high-dimensional 
data set — the spatiotemporal dynamics 
of the human heart, for example — such 
analysis often finds that a description of 

low dimension, retaining only a few basic 
spatiotemporal modes, captures a large 
fraction of the variation in the data. The 
generic sloppiness of natural processes may 
be a natural explanation.

Sloppiness, the authors argue, may also 
explain why many biological systems are 
so robust to environmental variations. 
The circadian rhythm in cyanobacteria, 
for example, maintains a 24-hour cycle 
over a wide range of temperatures, even as 
chemical reaction rates of the key proteins 
involved double over this range. This may 
tell us something about how evolution 
has exerted control, focusing on a few stiff 
parameters, yet also benefiting from the low 
sensitivity of the circuit to other parameters. 
Engineering such control may not be as 
difficult as it seems, given the existence and 
availability of many neutral dimensions 
for adjustment.

Transtrum and colleagues also argue 
that sloppiness probably explains why 
humans — and many other animals — are 
so good at visual pattern recognition, and 
reliant on it for interacting with the external 
world. Pattern recognition means locking 
on to low-dimensional representations, 
and ignoring huge volumes of other 
data. We don’t need any further detail, 
perhaps, because the objects we need to 
identify — faces, for example — admit low-
dimensional representations capturing most 
of the important information.

Finally, sloppiness might even explain 
why science itself is possible. The world in 
all its detail — in anything from ecology 
to macroeconomics to astrophysics — is 
overwhelmingly complex, yet also much 
simpler than it looks. Vastly simplified 
models can always capture important 
features, although they of course leave 
others out (in many systems, for example, 
influences on single elements truly can lead 
to macro changes). We do science with low-
dimensional models because more complex 
models are typically less efficient, dwelling 
on details of marginal importance.

Transtrum and colleagues, it seems, 
started out thinking about how to analyse 
data and build models useful for systems 
biology. Rather than just applying to 
biology, however, their findings may be 
much more general. Complexity is a barrier 
to understanding, but it’s not nearly as 
impenetrable as it seems. ❐
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The world in all its 
detail is overwhelmingly 
complex, yet also much 
simpler than it looks.
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