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Topological modes bound to dislocations in
mechanical metamaterials
Jayson Paulose, Bryan Gin-ge Chen and Vincenzo Vitelli*

Mechanical metamaterials are artificial structures with
unusual properties, such as negative Poisson ratio, bistability
or tunablevibrationalproperties, thatoriginate in thegeometry
of their unit cell1–5. Often at the heart of suchunusual behaviour
is a soft mode: a motion that does not significantly stretch
or compress the links between constituent elements. When
activated by motors or external fields, soft modes become
the building blocks of robots and smart materials. Here, we
demonstrate the existence of topological soft modes that can
be positioned at desired locations in a metamaterial while
being robust against awide range of structural deformations or
changes inmaterial parameters6–10. These protectedmodes, lo-
calized at dislocations in deformedkagomeand square lattices,
are themechanical analogue of topological states bound to de-
fects in electronic systems11–14. We create physical realizations
of the topological modes in prototypes of kagome lattices built
out of rigid triangular plates. We show mathematically that
they originate from the interplay between two Berry phases:
the Burgers vector of the dislocation and the topological
polarization of the lattice. Our work paves the way towards en-
gineering topologically protected nanomechanical structures
for molecular robotics or information storage and read-out.

Central to our approach is a simple insight:mechanical structures
on length scales ranging from the molecular to the architectural
can often be viewed as networks of nodes connected by links15.
Whether the linking components are chemical bonds or metal
beams, mechanical stability depends crucially on the number of
constraints relative to the degrees of freedom. When the degrees
of freedom exceed the constraints, the structure exhibits excess
zero (potential) energy modes. Conversely, when the constraints
exceed the degrees of freedom, there are excess states of self-stress—
balanced combinations of tensions and compressions of the links,
with no resultant force on the nodes. The generalized Maxwell
relation16 stipulates that the index ν, given by the difference between
the number of zero modes, nm, and the number of states of self-
stress, nss, is equal to the difference between the number of degrees
of freedom, Ndf, and the number of constraints, Nc,

ν≡nm−nss=Ndf−Nc (1)

A trivial way to position a zero-energy mode in the interior of
a generic rigid lattice is to remove some bonds, locally reducing
the number of constraints. Consider, instead, a network that
satisfies everywhere the local isostatic condition Ndf=Nc (which
precludes bond removal). In this case, zero modes can be present
only in conjunction with an equal number of states of self-stress,
invisible partners from the perspective of motion. Isostaticity by
itself, however, does not dictate how the modes are distributed
spatially. Kane and Lubensky6 recently introduced a special class of

isostatic lattices that possesses a further feature called topological
polarization. Much as an electrically polarized material can localize
positive and negative charges at opposite boundaries, a topologically
polarized lattice can harbour zero modes or states of self-stress at
sample edges (whose outward normal is respectively aligned or anti-
aligned with the polarization). The edge mode distribution is biased
even though both boundaries are indistinguishable on the basis of
local constraint counting. Furthermore, this bias is insensitive to
local variations in bond lengths, spring constants, or node masses,
provided no bonds are cut and the lattice remains rigid in the bulk6.

In this Letter, we harness the topological polarization to
place zero modes in the interior of an isostatic lattice where
topological defects called dislocations are positioned. Dislocations
are termination points of incomplete lattice rows that have an edge-
like character. They are characterized by a topological charge called
the Burgers vector, b, which measures the deficit in any circuit
surrounding the dislocation, see Fig. 1a,c. A dislocation is composed
of a dipole of under-coordinated (green) and over-coordinated
(orange) points (Fig. 1a) or plaquettes (Fig. 1b–d), whose orientation
is obtained on rotating b by π/2. The dipole moment, d, a vector
connecting the under-coordinated point/plaquette to the over-
coordinated one, points outward from the added strip of material
that terminates at the dislocation and has a magnitude equal to the
strip width. Therefore, d quantifies the orientation and size of the
effective ‘edge’ created by the dislocation.

To localize topological modes at these effective edges, we need
to incorporate the dislocations into polarized lattices without
modifying the local constraint count (that is, trivial zero modes
must be excluded). We demonstrate this construction for two
polarized lattices: a deformed kagome lattice introduced in ref. 6
and a deformed square lattice. As shown in Fig. 1, both lattices
are obtained by decorating a 2D crystal lattice (regular hexagonal
and square, with primitive vectors {a1, a2} indicated in Fig. 1a,c,
respectively) with amulti-atom basis at each unit cell. In the absence
of defects, the unit cell determines the topological polarization PT
of the bulk lattice. In the Supplementary Information we show that
PT= a1− a2 for the deformed square lattice; it has been shown in
ref. 6 that PT=a1 for the deformed kagome lattice. Dislocations in
the undecorated lattice carry over to the polarized lattice and, when
appropriately chosen, produce a lattice that is four-coordinated
everywhere (Fig. 1b,d). See the Supplementary Information for
more details of the construction.

Having constructed polarized lattices with dislocations, we
numerically compute their vibrational spectrum by treating each
bond as a harmonic spring. Results are shown in Fig. 2a,b
for deformed kagome and square networks, respectively. We
use periodic boundary conditions, which preserves isostaticity
everywhere but requires a net Burgers vector of zero. As a
result, dislocations appear in pairs with equal and opposite dipole
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Figure 1 | Dislocations in polarized isostatic lattices. a, Hexagonal lattice
with primitive vectors {a1,a2}. The lattice includes an elementary
dislocation, consisting of a five-coordinated point (green) connected to a
seven-coordinated point (orange) in an otherwise six-coordinated lattice
(blue points). The Burgers vector b=−a2 is the deficit in a circuit (black
dashed line) that would have been closed in a defect-free lattice. Rotating
this vector by π/2 gives the corresponding dipole moment vector d, which
connects the five-coordinated point to the seven-coordinated point.
Decorating each unit cell with a three-atom basis (yellow points and
magenta bonds) produces a dislocated deformed kagome lattice which
contains only four-coordinated points. Three copies of the three-atom basis
are shown; solid bonds connect points within the same unit cell, whereas
dashed bonds connect points belonging to di�erent cells. b, Deformed
kagome lattice obtained by decorating the triangular lattice in a, thus
incorporating a dislocation with the same dipole moment d. The five- and
seven-coordinated points in the underlying triangular lattice translate into
plaquettes bordered by five (green) and seven (orange) bonds, respectively,
whereas all other points in the triangular lattice translate to plaquettes
bordered by six bonds (blue) in the decorated lattice. The topological
polarization PT=a1, calculated in ref. 6, is also shown. c, Square lattice with
primitive vectors {a1,a2} (black arrows) which incorporates a dislocation,
consisting of a three-coordinated plaquette (bordered by green bonds)
adjacent to a five-coordinated plaquette (bordered by orange and green
bonds), with Burgers vector b=−(a1+a2). The associated dipole moment
d connects the three- and five-coordinated plaquettes. d, Decorating each
point in c with the four-point unit cell (yellow points and magenta bonds)
gives a distorted square lattice which incorporates a dislocation of the same
dipole moment, and has a non-zero topological polarization PT=a1−a2.

moments. In both networks, the dipole moments of the dislocation
on the left (dL = a1 − a2) and on the right (dR = −dL) are
aligned, respectively, with and against the lattice polarization.
The left dislocation has an associated soft mode in both cases,
labelled by arrows, whose energy decreases with system size. The
opposite dislocation is associated with an approximate state of
self-stress, labelled by coloured and thickened bonds following
ref. 6. See Supplementary Information for computational details.
These observations are consistent with the intuitive interpretation
of dislocations as edges oriented by their dipole moment.

To assess whether these modes can be observed in metamaterials
with realistic bonds, joints and boundary conditions, we have built
prototypes of the deformed kagome lattice, composed of rigid
triangles laser-cut out of 3mm thick PMMA sheets. The corner
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Figure 2 | Mechanical modes localized at defects. a, Visualization in a
deformed kagome lattice of a numerically obtained low-energy soft mode
(red arrows, showing the direction, with lengths and thicknesses scaled by
the relative amplitude of allowed displacements) and an approximate state
of self-stress (thickened bonds, showing bond forces in magenta (+) and
blue (−) that cancel each other) associated with a pair of dislocations with
equal and opposite dipole moments dL and dR (dashed arrows). The
dislocations are in the interior of a lattice with periodic boundary conditions
that is perfectly isostatic. Only a small region of the lattice is shown. Each
dislocation consists of a five-coordinated plaquette (enclosed by green
triangles) adjacent to a seven-coordinated plaquette (enclosed by green
and orange triangles). b, Section of a deformed square lattice of a
numerically obtained low-energy soft mode and a state of self-stress
associated with a pair of dislocations with equal and opposite dipole
moments dL and dR. The visualization method is similar to that in a. The
dislocations are in the interior of a lattice with periodic boundary conditions
that is perfectly isostatic. Each dislocation consists of a three-coordinated
plaquette (enclosed by cyan plaquettes) near a five-coordinated plaquette
(enclosed by cyan and yellow plaquettes). All other plaquettes are
four-sided. c, Plastic prototype of a deformed kagome network, built as
described in the text. The interior contains two dislocations which
reproduce the configuration from the computer model shown in a. Scale
bar, 5 cm. Inset: superposition of three configurations that span the range of
the free motion associated with the left dislocation.

of the triangles are connected by plastic bolts that act as hinges.
The boundary points are pinned to a flat base by screws, but
can pivot freely. The design ensures that each internal vertex has
as many constraints as degrees of freedom, satisfying the local
isostatic condition away from the boundary. Figure 2c shows such a
prototype mimicking the dislocation configuration of the computer
model from Fig. 2a. Theoretically, the boundary pinning and the
use of rigid triangles push the phonon gap to infinity, so that
only zero modes can be observed. In practice, the prototype has
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Figure 3 | Anisotropic localization of the soft mode. a, Amplitude of the soft mode associated with the left dislocation in the kagome lattice shown in
Fig. 2a, visualized as blue disks whose area is scaled by the displacement magnitude at each lattice point. The dipole moment vectors dL and dR (solid
arrows) indicate the position and orientation of the dislocations. Inset: soft mode amplitude as a function of distance from the left dislocation, along two
directions (indicated by red and green circles in the main panel which enclose the lattice points sampled in the red and green curves, respectively). b, Same
as in a for the soft mode associated with the left dislocation shown in Fig. 2b.

some compliance and mechanical play at the pivots. Nonetheless,
it is rigid in the bulk, as can be verified by unsuccessfully
trying to move the (white) triangles far from the dislocations, see
Supplementary Movie 1.

Despite the differences between the two systems, the soft mode
observed in the simulated harmonic network survives in the real-
world prototype as a collective motion of points near the left
dislocation. The motion is easily activated by pushing the hinge
joints of the triangles that make up the dislocation (inset to Fig. 2c
and Supplementary Movie 2). The motion is not a strict zero mode
because it interacts with the pinned boundary of the finite system,
but the structural compliance is sufficient for the remnant soft
motion to be observed. In contrast, the dislocation on the right
does not admit displacements in its vicinity and remains rigid
(Supplementary Movie 3), consistent with the simulations.

To quantify the number and type of modes associated with
a dislocation, an electrostatic analogy proves useful. Once the
connectivity of a locally isostatic lattice is fixed, the index ν in
equation (1) can be viewed as a topological charge, invariant under
smooth deformations of the lattice. Just as the Gauss law yields
the net charge enclosed in a region from the flux of the electric
polarization through its boundary, the net value of ν in an arbitrary
portion of an isostatic lattice is given by the flux of the topological
polarization through its boundary6. On evaluating the flux of PT on
a contour encircling an isolated dislocation, we obtain

ν=
1

Vcell
PT ·d (2)

where Vcell is the unit cell area. In the Supplementary Information,
we present a detailed derivation of equation (2) that accounts for the
elastic strains around the dislocation. Here, we simply comment on
its physical interpretation.

The topologically protectedmodes arise from a delicate interplay
between a Berry phase associated with cycles in the Brillouin zone,
embedded in PT (ref. 6), and the Berry phase of a topological
defect in real space, represented by its Burgers vector (or dipole d).

A similar interplay dictates the existence of localized electronic
modes at dislocations in conventional topological insulators12,13.
Equation (2) gives ν =+1 (−1) for the left (right) dislocation in
the deformed kagome lattice, and ν =+2 (−2) in the deformed
square lattice. The sign of ν distinguishes zero modes (+) from
states of self-stress (−), while its magnitude gives their numbers.
For instance, we correctly predict that the square lattice of Fig. 2b
admits two soft modes localized to the left dislocation (as verified in
Supplementary Fig. 1).

The soft modes investigated here have unusual localization
properties, as shown in Fig. 3. The mode amplitude falls off
exponentially along most rays originating at the core of the left
dislocation, but the decay length depends on the direction of
the ray relative to the underlying lattice. There are two special
directions in each lattice (one of which is highlighted by red circles
in both Fig. 3a,b) along which the localization is weak. In all other
directions, the mode decays over much shorter length scales, of
the order of a few lattice constants (green circles and symbols in
Fig. 3). In the Supplementary Information, we show that the weak
localization directions track lines in momentum space along which
the acoustic modes vary quadratically, rather than linearly, with the
momentum. The localization of the approximate state of self-stress
behaves similarly, with weak directions that are the opposite of those
for the soft mode.

The topologically protected modes we have identified could
have applications across a wide range of systems and length scales.
At macroscopic scales, isostatic origami structures exist whose
deformations are restricted to rotations of hinged triangles, much
as in the kagome lattice17. At the microscale, dislocations could
be used for robust information storage, with a bit encoded by the
presence (+) or absence (−) of a topological soft mode, in turn
controlled by the orientation of the Burgers vector. Such protected
bits could be hard-wired into microscopic ‘punch cards’ that could
be read out mechanically by probing the region around dislocations
for softmotions (or lack thereof).We also envisagemolecular robots
and smart metamaterials that could exploit the protected modes as
activated mechanisms.
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