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Experimental observation of steady inertial wave
turbulence in deep rotating flows
Ehud Yarom and Eran Sharon*
The theoretical framework that should be used for describing
rotating turbulence1–3 is the subject of an active debate.
It was shown experimentally4,5 and numerically6,7 that the
formalism of 2D turbulence is useful in the description of
many aspects of rotating turbulence. On the other hand,
theoretical and numerical work suggests that the formalism
of wave turbulence8–10 should provide a reliable description of
the entire 3D flow field11–15. The waves that are suggested as
the basis for this turbulence are Coriolis-force-driven inertial
waves1. Here we present experimental results that suggest the
existence of inertial wave turbulence in deep steady rotating
turbulence. Our measurements show energy transfer from the
injection scale to larger scales, although the energy spectra are
concentrated along the dispersion relation of inertial waves.
The turbulentfieldsare, therefore,well describedasensembles
of 3D interacting inertial waves.

Rotating flows are described by the rotating Navier–Stokes
equation1. For incompressible fluids this equation is characterized
by two dimensionless numbers: the Reynolds number, Re=UL/v,
and the Rossby number, Ro=U/2ΩL (U and L are the typical
velocity and length in the flow, v the kinematic viscosity and
Ω = |�| the rotation rate of the system). Rotating turbulence is
obtained for Re� 1 and Ro< 1. Such flows, which are common
in various geophysical and planetary systems, have been studied
extensively16. It was found that the horizontal component of the
velocity field in such flows shares many similarities with 2D
turbulence. In particular, the cascade of energy to large scales5,7,17,
the formation of coherent structures18 and the self-similarity of
the flow field4 appear in both types of flows. However, the
2D description cannot describe the entire 3D rotating turbulent
field. In addition, it is not obtained rigorously from the rotating
Navier–Stokes equation.

For small enough Ro (fast rotation), the linearized (rotating)
Navier–Stokes equation supports the propagation of waves,
known as inertial waves1. Each component of the velocity field,
u= (ux , uy , uz), varies in space and time via the propagation of
plane waves of the form ux ,y ,z∝ei(k·r+ωt), where ω and k are the wave
frequency and wavevector, respectively. These waves obey a unique
dispersion relation:

ω=±
2(k ·�)
|k|

=±2Ω cos(θ) (1)

where θ is the angle between k and �.
This dispersion relation has some unusual properties: The group

and phase velocities are perpendicular to each other; there is a cutoff
frequency of 2Ω , above which inertial waves do not exist; the wave
frequency, ω, defines only the orientation of the wavevector, k̂, not
its magnitude.

It was suggested12,14,15 that weak steady rotating turbulence
(moderate Re and low Ro) should be well described as the wave

turbulence of 3D interacting inertial waves. In wave turbulence,
the energy is contained and transferred by interacting waves. As
such, a continuous energy spectrum is built along the dispersion
relation curve of the linear waves of the system. The theory of wave
turbulence provided explicit predictions for the energy spectra and
energy transfer in various systems (see refs 8–10,19 and references
therein). Some of these predictions were experimentally confirmed
in systems such as surface waves19–21 and elastic bending waves22–24.
Being a rigorous 3D approximation, inertial wave turbulence, if
valid, would provide an excellent framework for the study of rotating
turbulence. However, rotating inertial wave turbulence has never
been measured experimentally.
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Figure 1 | Experimental set-up. A laser sheet illuminates a rotating Plexiglas
cylinder filled with water and seeded with tracer particles. Using a galvo
mirror, the sheet is repeatedly swept vertically through 30 horizontal
planes, in the range1h=25.6 cm around height h0. A co-rotating
camera (∼750 frames per second) images the light scattered from the
tracer particles.
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Figure 2 | 1D energy spectra in time or space for 2D measurements. a, Evolution of the energy spectrum (Ω=3π rad s−1, measurement area
A=52×52 cm2) at di�erent times: t(s)=5.0 (blue filled squares); 10.5 (green filled circles); 34.7 (red filled triangles); steady state (grey filled stars). At
short times the energy injection scale is visible as a high peak at k=0.87 rad cm−1 (Supplementary Information 2, Supplementary Figs 3 and 4a). At longer
times the energy gradually occupies larger scales (Supplementary Fig. 4b). The final steady state has a power law of k−5/3 (solid line). b, Averaged energy
density spectrum at di�erent rotation rates (h0=70 cm):Ω (rad s−1)= 1π (blue filled circles); 1.5π (green filled circles); 2π (red filled circles); 2.5π (cyan
blue filled circles); 3π (purple filled circles); 3.5π (chartreuse green filled circles); 4π (grey filled circles). At low frequencies all measurements have the
same energy spectra, with a power law of ω−1.35±0.05. At a cuto� frequency ω?(Ω) there is a sharp decrease in energy. The inset shows the compensated
energy spectrum Eωω1.35 for three experiments:Ω (rad s−1)= 1π (blue dash-dotted), 2π (red dashed) and 3π (purple solid). The sharp decrease of energy
can clearly be seen. The spikes at ω>Ω are measurement noise and correspond to the rotation rate (Ω) and its harmonics. c, The cuto� frequency (ω?) as
a function of rotation rate (Ω) for two di�erent heights. ω? is defined as the frequency above which the energy spectrum no longer coincides with the
power-law slope. Owing to the above-mentioned noise, ω? can be determined with error bars as follows: the error value for ω<ω? is defined as the width
of the spike at ω=2Ω , whereas the error value for ω>ω? is defined as the resolution of the measurement. The black dotted line indicates ω?=2Ω .

Experiments did show that inertial waves are emitted from
coherent, weak sources in rotating fluids1,25. In addition,
components of inertial waves were measured during the early
stages of turbulence build-up26,27, or the late stages of its decay28.
However, the unusual dispersion relation (equation (1)) makes
it difficult to directly measure these waves within turbulence:
the wavevector k is related to the wave frequency ω only via its
orientation. Therefore, verifying the dominance of these linear
waves requires 3D information about the velocity field.

We describe an experimental system that clearly resolves
the variation of the horizontal velocity field, u⊥(x , y , z , t) =
(ux(x , y , z , t), uy(x , y , z , t)), in three dimensions together with
its temporal variation. The measurements cover three decades in
time and one and a half decades in (3D) length scale, allowing
transformation into 3D spatial Fouriermodes plus temporal Fourier

modes. This 4D Fourier decomposition allows direct measurements
of inertial waves in steady turbulence.

The experimental set-up is composed of a rotating Plexiglas
cylinder, 90 cm in height and 80 cm in diameter (see Fig. 1), which
rotates at angular velocities between π and 4π rad s−1 (with �
along the z direction). The cylinder is filled with water seeded with
50 µm white polyamide particle tracers, and closed with a clear
flat lid. Energy is injected by circulating the water through 248
soft outlet tubes (silicon, 0.8mm inner diameter, 12.5 cm length)
and 73 inlets (6mm diameter), which are arranged in overlapping
hexagonal grids (4.1 cm and 8.2 cm spacing, respectively) at the
bottom of the tank. This device injects kinetic energy at a scale close
to 7 cm (Supplementary Information 2 and Supplementary Fig. 3).
In this paper all experiments are with moderate Reynolds number,
Re∼1,500–5,000, and small Rossby number, Ro∼0.006–0.02. The
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Figure 3 | Direct measurements of the inertial wave spectrum. The energy spectrum is localized along curves that correspond to the dispersion relation
(equation (1)) of inertial waves. Integration across di�erent wavenumber ranges (0.78–1.39 (a); 1.42–2.03 (b); 2.06–2.64 (c); 2.67–3.28 (d) rad cm−1)
shows that the shape of the curve is independent of |k|. In the high wavenumber range (c,d), the upward propagating waves carry more energy than
the downward propagating waves. The data were taken at h0=68.5 cm, with1h=25.9 cm andΩ=4π rad s−1. The spikes at θ=π/2 and
ω=±4π,±8π rad s−1 are measurement noise corresponding to the rotation rate and its harmonics.

resultant flows are turbulent. They are highly irregular and contain
energy in a wide range of scales (Supplementary Movie 1 for
flow visualization).

Ahorizontal laser sheet illuminates a cross-section of the cylinder
at a specific (variable) height. The laser sheet is swept vertically in
the range 1h=25.6 cm using a fast rotating mirror (‘galvo’). Each
vertical scan consists of 30 horizontal planes (0.89 cm spacing) and
lasts 46.7ms. A co-rotating camera captures the light scattered from
the particles at ∼750 fps. The captured data is used for particle
imaging velocimetry (PIV). The set-up provides 3D measurement
of the horizontal velocity field, u⊥, inside a 25×25×26 cm3 volume
at a 21.4Hz rate (see Methods for more details).

We start by measuring the 2D flow field (1h=0 cm) at different
stages of turbulence build-up. The energy injection system is turned
on at time t=0 while the fluid is at rest in the rotating frame (rigid
body rotation). It was shown27 that at short times the 1D energy
spectrum evolution is dominated by the arrival of the injected
(∼7 cm) inertial waves at the measurement plane (Supplementary
Information 2 and Supplementary Fig. 4a). At longer times (Fig. 2a
and Supplementary Fig. 4b) the spectrum evolves towards its steady
state via an inverse energy cascade (see ref. 5 for more details). The
steady state spectrum is well fitted by Ek∼k−5/3. Both the spectrum
evolution and its steady state are consistent with thewave turbulence
predictions (see ref. 10 Ch. 3.2.4 and 9.2.3).

Next wemeasure the steady state turbulence and plot the average
temporal Fourier transform of the energy, Eω = 1/2TA

∫
(|ũx |

2
+

|ũy |
2)dxdy, for various rotation rates. Here ũx = ũx(x , y , ω) and

ũy = ũy(x , y ,ω) are the temporal Fourier transforms of ux(x , y , t)
and uy(x , y , t), respectively, A is the measured area and T is
the total measurement time. In past works, this energy spectrum
has received less attention than the spatial energy spectrum, Ek.

However, equation (1) provides information about the temporal
variations in the flow which should be reflected in the temporal
spectrum. The measured energy spectra have a characteristic shape
(Fig. 2b): at low measured frequencies they have a well-defined
power law ω−1.35±0.05, regardless of the rotation rate. The power
law spans two decades, from the lowest measured frequency up to
a cutoff frequency (ω?) (see Fig. 2c for its definition). Above ω?
the spectra have a sharp decrease in magnitude (inset in Fig. 2b).
Plotting the cutoff frequency as a function of rotation rate (Fig. 2c)
shows that ω? ≈ 2Ω , the frequency limit for inertial waves (see
equation (1)). The relation holds for both the top and middle
regions of the tank. These measurements indicate that the statistics
of rotating turbulence is affected by the dispersion relation of inertial
waves.However, such 2Dmeasurements cannot tell if the statistics at
ω<ω?, wheremost of the energy is located, is related to equation (1)
in any way.

The next step is to directly measure the relation betweenω and k.
As, according to equation (1),ω depends only on the angle of kwith
respect to the rotation axis (θ), a unique relation should exist only in
the (ω,θ) plane. Using the rapidly scanning laser sheet technique we
measure the 3D horizontal velocity field u⊥(x ,y ,z , t). Themeasured
fields are Fourier transformed in three spatial coordinates and in
time, leading to the fields ˜̃ux(k, ω) and ˜̃uy(k, ω), with the 4D
energy spectrum defined as: E(k,ω)=1/2(| ˜̃ux(k,ω)|2+|˜̃uy(k,ω)|2).
E(θ , ω) is obtained by expressing k in spherical coordinates
as k=(k,θ ,ϕ) and integrating E(k,ω) over ϕ and k (the integration
on k is performed over a range in which the resolution in θ is suffi-
cient—Supplementary Information 1 and Supplementary Fig. 1).

Figure 3 shows energy spectra that were obtained by integration
over ϕ and over four different ranges of k. The kinetic energy is
localized along two well-defined curves in the (θ ,ω) plane. The
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Figure 4 | Energy spectra peak location for various rotation rates. a, The location of energy peaks for all ω<2Ω for di�erent rotation rates:Ω (rad s−1)
= 1.6π (purple 5-pointed open star); 2.2π (cyan open circle); 2.8π (red 6-pointed open star); 3.4π (green open square); and 4π (blue open triangle). The
peak values were extracted from data similar to that shown in Fig. 3, with integration across the full range of wavenumbers. b, The same data as shown in a,
with the ω axis rescaled by 2Ω . The black dashed lines are the expected rescaled dispersion relations:±cos(θ). All experiments are for h0=6.85 cm and
1h=25.9 cm.

curves follow the dispersion relation (equation (1)) for ω< 2Ω ,
with practically no energy for ω>2Ω , which is 8π in this case. The
similarity of the various subplots (a–d) indicates that, as expected,
the shape of the curves is independent of |k|. The slight asymmetry
in the power contained in the positive and negative branches of the
dispersion relation (Fig. 3c,d) is due to the net energy flux from the
bottom of the tank to its top.

To further quantify the connection between the energy spectra
of Fig. 3 and equation (1) we perform measurements of the full
energy spectrum, E(θ ,ω), obtained by integration over the entire
range 0.78<k<3.28 rad cm−1 (Supplementary Fig. 2). The spectra
are obtained for different rotation rates, Ω . Figure 4a shows the
maxima, per given frequency ω, of the energy spectrum for various
rotation rates. Rescaling ω by 2Ω (Fig. 4b) leads to an excellent data
collapse and a very good agreement with the theoretical predictions
given by equation (1) (black dashed lines). This is a clear and direct
indication that the energy is contained in the form of linear inertial
waves spanning almost all possible frequencies. This is true not
just for the steady state, but also for evolving flows. Computing
E(θ , ω) during the spectrum build-up shows (Supplementary
Information 3, Supplementary Fig. 5 and Movie 2) that the
energy is contained in the form of inertial waves. Therefore, the
energy transfer between scales, which is presented in Fig. 2a
(and Supplementary Fig. 4b), is due to the interaction between
inertial waves.

We have shown that steady deep rotating turbulence, ofmoderate
Reynolds number, can be well described as a 3D wave turbulence.
Linear inertial waves are the basic modes of the turbulent state.
They transfer the injected energy and form a broad distribution
of energy in both the length scale and timescale, while preserving
their unique dispersion relation. Thus, the resultant turbulent state
is characterized by a unique relation between spatial and temporal
fluctuations of the flow. The entire 3D turbulent flow field, which
was previously studied in an approximated 2D framework, is
in fact an ensemble of interacting waves. The study of rotating
turbulence can, therefore, be performed within a well-defined, fully
3D framework.

In the broader context, our work suggests the existence of wave
turbulence in a 3D system—a system which is not naturally viewed
as a wave system. As such, it provides crucial experimental support
to this important theory.

The results presented here open the way for further quantitative
studies. In particular, the pronounced temporal energy spectrum,
which is close to Eω ∝ ω−4/3, is not predicted by any theoretical
work we are aware of. In fact, using the relation between ω and θ
(equation (1), Fig. 4b) we can write E(cos(θ))∝ (cos(θ))−4/3 . The
singularity at θ=π/2 of this dependence is stronger than theoretical
predictions14,15. The theoretical origin of this dependence and its
implications should be studied theoretically and experimentally.
Finally, questions regarding the range in parameter space in which
rotating wave turbulence exists, and its relation to previously
observed quasi 2D turbulence, call for further work.

Methods
We perform 2D PIV measurements on 30 horizontal planes using a rapidly
scanning laser sheet. In each scan, the galvo starts at the smallest angle (laser
sheet at lowest location: h0−0.51h) and scans upwards through the selected
angles, triggered by the camera. After each frame the mirror rotates such that the
laser sheet moves to the next height. After the laser sheet reaches the top layer
(h0+0.51h) the galvo rotates back to the lowest layer and starts over. The total
rotation of the galvo is 0.8◦ and the total optical distance to the tank is about 9m.

The PIV algorithm is self-written using MatLab, based on MatPIV and
OpenPIV, and adjusted to work on a graphics processing unit (GPU). The PIV
measurement is made between two pictures at the same height (2D velocity field).
Our 2D measurements (Fig. 2) are made using a PIV window of 8 × 8 pixels with
50% overlap. For the spatial spectrum (Fig. 2a) the measurements (996 × 996
pixels) have a resolution of 0.23 cm with a 52 cm viewing field (248 × 248 data
grid size). In Supplementary Fig. 4 the resolution is 0.58 cm with a 43.2 cm
viewing field (600 × 600 pixels, window of 16 × 16 pixels, 74 × 74 data grid
size). For the temporal spectrum (Fig. 2b,c) the measurements (470 × 470 pixels)
have a resolution of 0.23 cm with a 26.9 cm viewing field (116 × 116 data grid
size). The 3D measurements (Figs 3 and 4) are made with a window of 12 × 12
pixels, which results in a 0.32 cm resolution and a 24.3 cm viewing field. The z
axis has a 0.89 cm resolution with a total height of 25.9 cm (total data grid size:
77 × 77 × 30). Supplementary Fig. 3 has a resolution of 0.22 cm with a viewing
field of 20.45 cm (window size of 10 × 10 with a 74 × 74 grid data size).

In the 3D measurements we perform PIV between every two sequential
pictures at the same height. However, there is a difference in size between
pictures at the top and bottom of the scanned volume (owing to the different
distance between the camera and the laser sheet: from 0.66mm/px at the bottom
layer to 0.53mm/px at the top layer). To use FFT we interpolate the PIV results
according to the largest possible area which includes all heights (for example, the
top layer size), and according to the bottom layer time.

Received 23 January 2014; accepted 8 May 2014;
published online 8 June 2014

NATURE PHYSICS | VOL 10 | JULY 2014 | www.nature.com/naturephysics 513

© 2014 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys2984
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS2984

References
1. Greenspan, H. P. The Theory of Rotating Fluids (Cambridge Univ. Press, 1968).
2. McEwan, A. D. Angular-momentum diffusion and initiation of cyclones.

Nature 260, 126–128 (1976).
3. Hopfinger, E. J., Browand, F. K. & Gagne, Y. Turbulence and waves in a rotating

tank. J. Fluid Mech. 125, 505–534 (1982).
4. Baroud, C. N., Plapp, B. B., Swinney, H. L. & She, Z. S. Scaling in

three-dimensional and quasi-two-dimensional rotating turbulent flows. Phys.
Fluids 15, 2091–2104 (2003).

5. Yarom, E., Vardi, Y. & Sharon, E. Experimental quantification of inverse energy
cascade in deep rotating turbulence. Phys. Fluids 25, 085105 (2013).

6. Chen, Q. N., Chen, S. Y., Eyink, G. L. & Holm, D. D. Resonant interactions in
rotating homogeneous three-dimensional turbulence. J. Fluid Mech.
542, 139–164 (2005).

7. Sen, A., Mininni, P. D., Rosenberg, D. & Pouquet, A. Anisotropy and
nonuniversality in scaling laws of the large-scale energy spectrum in rotating
turbulence. Phys. Rev. E 86, 036319 (2012).

8. Zakharov, V. E., L’vov, V. S. & Falkovich, G. Kolmogorov Spectra of Turbulence 1:
Wave Turbulence (Springer, 1992).

9. Newell, A. C. & Rumpf, B. in Annual Review of Fluid Mechanics, Vol. 43
(ed. Davis, S. H. M. P.) 59–78 (Annual Reviews, 2011).

10. Nazarenko, S.Wave Turbulence (Springer, 2011).
11. Smith, L. M. &Waleffe, F. Transfer of energy to two-dimensional large

scales in forced, rotating three-dimensional turbulence. Phys. Fluids
11, 1608–1622 (1999).

12. Cambon, C., Mansour, N. N. & Godeferd, F. S. Energy transfer in rotating
turbulence. J. Fluid Mech. 337, 303–332 (1997).

13. Cambon, C., Rubinstein, R. & Godeferd, F. S. Advances in wave turbulence:
Rapidly rotating flows. New J. Phys. 6, 73 (2004).

14. Bellet, F., Godeferd, F. S., Scott, J. F. & Cambon, C. Wave turbulence in rapidly
rotating flows. J. Fluid Mech. 562, 83–121 (2006).

15. Galtier, S. Weak inertial-wave turbulence theory. Phys. Rev. E 68,
015301 (2003).

16. Pedlosky, J. Geophysical Fluid Dynamics (Springer, 1987).
17. Baroud, C. N., Plapp, B. B., She, Z. S. & Swinney, H. L. Anomalous

self-similarity in a turbulent rapidly rotating fluid. Phys. Rev. Lett.
88, 114501 (2002).

18. Ruppert-Felsot, J. E., Praud, O., Sharon, E. & Swinney, H. L. Extraction of
coherent structures in a rotating turbulent flow experiment. Phys. Rev. E
72, 016311 (2005).

19. Falcon, E. Laboratory experiments on wave turbulence. Discrete Contin.
Dynam. Syst. Ser. B 13, 819–840 (2010).

20. Holt, R. G. & Trinh, E. H. Faraday wave turbulence on a spherical liquid shell.
Phys. Rev. Lett. 77, 1274–1277 (1996).

21. Berhanu, M. & Falcon, E. Space-time-resolved capillary wave turbulence. Phys.
Rev. E 87, 033003 (2013).

22. Boudaoud, A., Cadot, O., Odille, B. T. & Touzé, C. Observation of wave
turbulence in vibrating plates. Phys. Rev. Lett. 100, 234504 (2008).

23. Mordant, N. Are there waves in elastic wave turbulence? Phys. Rev. Lett.
100, 234505 (2008).

24. Cobelli, P. et al. Space-time resolved wave turbulence in a vibrating plate. Phys.
Rev. Lett. 103, 204301 (2009).

25. Bordes, G., Moisy, F., Dauxois, T. & Cortet, P-P. Experimental evidence of a
triadic resonance of plane inertial waves in a rotating fluid. Phys. Fluids
24, 014105 (2012).

26. Davidson, P. A., Staplehurst, P. J. & Dalziel, S. B. On the evolution of eddies in a
rapidly rotating system. J. Fluid Mech. 557, 135–144 (2006).

27. Kolvin, I., Cohen, K., Vardi, Y. & Sharon, E. Energy transfer by inertial waves
during the buildup of turbulence in a rotating system. Phys. Rev. Lett.
102, 014503 (2009).

28. Bewley, G. P., Lathrop, D. P., Maas, L. & Sreenivasan, K. R. Inertial waves in
rotating grid turbulence. Phys. Fluids 19, 071701 (2007).

Acknowledgements
This work was supported by the Israel Science Foundation, Grant No. 81/12.

Author contributions
E.Y. designed, measured and analysed the data, E.S. initiated the experiment. Both
authors wrote the paper.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to E.S.

Competing financial interests
The authors declare no competing financial interests.

514 NATURE PHYSICS | VOL 10 | JULY 2014 | www.nature.com/naturephysics

© 2014 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys2984
http://www.nature.com/doifinder/10.1038/nphys2984
http://www.nature.com/reprints
www.nature.com/naturephysics

	Experimental observation of steady inertial wave turbulence in deep rotating flows
	Main
	Methods
	Acknowledgements
	References


