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From neutron stars to high-temperature superconductors,
strongly interacting many-body systems at or near quantum
degeneracy are a rich source of intriguing phenomena. The
microscopic structure of the first-discovered quantum fluid,
superfluid liquid helium, is difficult to access owing to limited
experimental probes. Although an ultracold atomic Bose gas
with tunable interactions (characterized by its scattering
length, a) had been proposed as an alternative strongly
interacting Bose system1–8, experimental progress9–12 has been
limited by its short lifetime. Here we present time-resolved
measurements of the momentum distribution of a Bose-
condensed gas that is suddenly jumped to unitarity, where
a= ∞. Contrary to expectation, we observe that the gas lives
long enough to permit the momentum to evolve to a quasi-
steady-state distribution, consistent with universality, while
remaining degenerate. Investigations of the time evolution of
this unitary Bose gas may lead to a deeper understanding of
quantum many-body physics.

A powerful feature of atom gas experiments that provides access
to these new regimes is the ability to change the interaction
strength using amagnetic-field Feshbach resonance13. In particular,
at the resonance location, a is infinite. For atomic Fermi
gases14–20, accessing this regime by adiabatically changing a led to
the achievement of superfluids of paired fermions and enabled
investigation of the crossover from superfluidity of weakly bound
pairs, analogous to the Bardeen–Cooper–Schrieffer theory of
superconductors, to Bose–Einstein condensation (BEC) of tightly
bound molecules16,17. For bosonic atoms, however, this route to
strong interactions is stymied by the fact that three-body inelastic
collisions increase as a to the fourth power21–23. This circumstance
has limited experimental investigation of Bose gases with increasing
interaction strength to studying either non-quantum-degenerate
gases24,25 or BECs with modest interaction strengths (na3 < 0.008,
where n is the atom number density)9–12.

The problem is that the loss rate scales as n2a4 whereas the
equilibration rate scales as na2v , where v is the average velocity.
Thus, it would seem that the losses will always dominate as a is
increased to ∞. Even if we were to forsake thermal equilibrium
and suddenly change a to project a weakly interacting BEC onto
strong interactions12,26–28, one might expect that three-body losses
would still dominate the ensuing dynamics for large a. In this
work, however, we use this approach to take a BEC to the unitary
gas regime, and we observe dynamics that in fact saturate on a
timescale shorter than that set by three-body losses and that exhibit
universal scaling with density.

One of the intriguing aspects of the unitary gas is that because a
diverges, it can no longer be a physically relevant scale for describing
the system and its behaviour. For a gas near zero temperature,
such as a BEC, the only physical scale that remains at unitarity
is the interparticle spacing. (In principle, the size of the cloud,
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or, equivalently the trap parameters, can provide a length scale,
although one that is not intrinsic to the system. In addition, we
are ignoring here any explicit three-body interactions, which could
provide an additional length scale.) The gas behaviour should then
be universal in the sense that it is characterized only by the density n.
This means that energies scale as n2/3, momenta as n1/3, and times as
n−2/3, which we parameterize respectively by En≡ h̄2(6π2n)2/3/2m,
kn≡ (6π2n)1/3 and tn≡ h̄/En.

The universality that makes the unitary gas so remarkable also
provides a reason to hope that rapid three-body loss will not nec-
essarily be an insurmountable barrier to experimental exploration
of bulk (as opposed to lattice-confined) degenerate Bose gases with
unitarity-limited interactions. For the degenerate unitary Bose gas,
both the loss rate and the equilibration rate must scale as n2/3. The
comparison of the two rates then hinges on unknown numerical
prefactors, and it becomes an experimental question whether losses
dominate or a local equilibrium can be reached. In addition, we
note that on resonance, the shallow bound state that exists for
finite positive a disappears, so that loss requires atoms to decay
to deeply bound molecular states29. For 85Rb atoms, the previous
experimental observation of a relatively narrow, and therefore
long-lived, Efimov resonance (characterized by a dimensionless
width, η= 0.057� 1; ref. 11) is indicative that atoms close together
do not decay instantaneously to deeply boundmolecular states.

Our experiments (Fig. 1a) begin with a 85Rb BEC of between 5
and 7×104 atoms confined in a 10Hz sphericalmagnetic trap30. The
magnetic field, B, is set approximately 8G above the 85Rb Feshbach
resonance at B0 = 155.04G (ref. 31). This sets the initial a to 142
a0, which gives the BEC a Thomas–Fermi density distribution with
an average density 〈n〉 = 5.5(3)× 1012 cm−3. With a typical initial
temperature <10 nK, the thermal de Broglie wavelength is large
compared with 〈n〉−1/3 and is not a relevant length scale in the
physics of the ensuing experiment. Starting with this BEC in the
extremely dilute limit, with 〈n〉a3< 10−5, we then decrease B to B0
in 5 µs. During the final 3 µs of the ramp of B, 〈n〉a3 goes from an
essentially dilute value of 10−4 to 〈n〉a3�1.

After allowing the cloud to evolve at unitarity for a time t ,
we measure the momentum distribution of atoms by ramping,
equally rapidly, back to small a and allowing the gas to expand
ballistically before imaging the cloud using resonant, high-intensity
absorption imaging32. From an azimuthal average of the image,
we extract a momentum-space column density ñ(k̃) as a function
of the component of momentum perpendicular to the line of
sight, k̃. By imaging at various times of flight (7, 13, 25ms), we
increase the dynamic range of our data and reduce the region of k̃
that is obscured by initial-size effects. We repeat this experimental
procedure for various t to explore the evolution of the momentum
distribution as a function of time at unitarity.

From images of the expanded cloud, we also obtain the number
of atoms, N , which we show in Fig. 1b as a function of t . Fitting an
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Figure 1 | The experimental geometry and loss rate at unitarity.
a, Schematic showing the geometry of the imaging. The magnetic-field
direction (ŷ), the imaging beam (−x̂) and the direction of gravity (−ẑ) are
mutually perpendicular. b, Number of atoms measured using absorption
imaging as a function of the time at unitarity. The number measured
without ramping to unitarity is shown at t=0. The solid line shows an
exponential fit to the data (points), which gives a time constant of
630±30 µs.

exponential decay to this early time data yields a time constant of
630±30 µs. In addition, the measured change in the spatial volume
of the condensate is (6± 9)% during the first 500 µs at unitarity.
A fact that is immediately clear from this data is that the density
loss at unitarity occurs on a timescale that is much longer than the
few microsecond duration of our ramps onto and away from the
Feshbach resonance. The ramp duration is also much shorter than
the characteristic time set by the interparticle spacing, tn=57 µs.

Equipped with this information regarding the timescales for
number loss and for expansion of the trapped gas at unitarity, we
now consider the measured momentum distributions. These are
shown in Fig. 2 for various t , with the inset showing the same
data on a log–linear plot. Given the finite times of flight before
imaging, the data at small k̃ are strongly affected by the initial size
of the BEC and do not accurately reflect ñ(k̃); the grey regions in
Fig. 2 indicate where initial-size effects are non-negligible, and we
see that a significant fraction of the signal lies within this region.
Nevertheless, the data clearly show the emergence of signal at high k̃,
outside the grey regions. The signal at high k̃ grows as a function of
t before saturating in approximately 100 µs. In this time, the gas has
not yet lost a significant number of atoms or significantly reduced
its density. The fact that the evolution timescale for ñ(k̃) is very
different from the loss timescale clearly points to a mechanism for
this dynamics that is distinct from three-body loss. Furthermore,
the much shorter timescale for saturation of ñ(k̃) suggests the
existence of a ‘quasi-equilibrium’ metastable state of a degenerate
Bose gas at unitarity.

To look for evidence of universality, we repeated the measure-
ments for a lower initial density of the BEC. The measured ñ(k̃)
for lower initial spatial density 〈n〉 also shows the emergence of
signal at high k̃ at unitarity. The distributions are similar to those
measured for the higher 〈n〉 (Fig. 2), except that the dynamics
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Figure 2 | The column-integrated momentum distribution ñ(k̃) versus the
transverse momentum k̃ after evolving at unitarity for time t. The
distribution measured without ramping to unitarity is shown at t=0. For
each t, the integral

∫
ñ(k̃)2πk̃dk̃=8π3N(t). For this data

〈n〉= 5.5(3)× 1012 cm−3, which corresponds to kn=6.9 µm−1. Each
momentum distribution is obtained from several images for each of three
expansion times (7, 13 and 25 ms). The inset shows the same data plotted
on log–linear axes. The grey regions indicate the part of the data that is
contaminated by initial-size effects and, therefore, does not accurately
reflect the momentum distribution. We observe the emergence of signal
outside this region, and a saturation of ñ(k̃) for t> 100 µs.
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Figure 3 | The momentum distribution, n(κ), plotted versus the scaled
momentum, κ. Data for 〈n〉= 5.5(3)× 1012 cm−3 and
〈n〉= 1.6(1)× 1012 cm−3 are shown as the black and grey lines, respectively.
Dashed lines indicate where the data are contaminated by finite-size
effects. The higher 〈n〉 data is the average of measurements for 6 hold
times t between 100 and 300 µs; the lower 〈n〉 data is the average of four
measurements for t between 200 and 700 µs. The distributions are
normalized so that

∫
n(κ)4πκ2dκ =8π3. The data for two different

densities are consistent with a single curve when plotted in scaled units.
Inset: plotting κ4n(κ) for high 〈n〉, we do not find clear evidence for a 1/κ4

tail at high κ .

occur over a longer timescale, with ñ(k̃) saturating in approximately
200 µs. To extract the three-dimensional n(k), we use an inverse
Abel transform. In Fig. 3, we show the saturated momentum dis-
tributions as a function of the scaled momentum, κ = k/kn, where
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Figure 4 | The number of atoms in two momentum ranges versus t. Data
for 〈n〉= 5.5(3)× 1012 cm−3 are shown with filled symbols; data for
〈n〉= 1.6(1)× 1012 cm−3 are shown with open symbols. The circles are the
fraction of atoms with κ between 1.20 and 1.32. The triangles are the
fraction of atoms with κ between 0.81 and 0.89. The lines show fits of the
data to1N0(1−exp−t/τ ), from which we extract the timescale for
saturation, τ .

kn is calculated at the average density 〈n〉. We find that the shape of
the distributions for the two 〈n〉 are very similar.

Given that our data are consistent with a universal shape for the
saturated n(κ) at high κ , we now discuss aspects of this distribution.
First, we note that although much of the signal remains at small
κ where our data are affected by initial-size effects, the population
with κ > 0.5 for the saturated n(κ) is nearly 50% of the initial N .
Second, for two-body short-range interactions, such as those that
give rise to the s-wave scattering length for atoms, one expects a 1/κ4
tail at highmomentum for an equilibrium gas, where the amplitude
of this tail is the thermodynamic parameter known as the contact33.
We do not find evidence for a 1/κ4 tail at high momentum, which
would appear as a flat line for large κ in Fig. 2 (inset); however, a
1/κ4 tail may exist below our detection limit at large κ where the
signal-to-noise ratio is poor. In addition, three-body interactions
couldmodify the high-momentum tail at unitarity34.

Finally, we consider the low-κ part of the momentum distribu-
tion and the question of whether or not the gas remains degenerate
after the rapid sweep to unitarity. At low κ , initial-size effects can
play a non-negligible role. However, this effect is such that we can
obtain a lower limit on the fraction of atoms that have κ < κmax by
integrating our n(κ) data up to κmax. This allows us to extract a lower
limit for the density of atoms in phase space. Specifically, we calcu-
late the average occupancy per state at low κ , which is given by the
number of atoms divided by the number of states in phase space:

〈ρocc〉=

 N
8π3

κmax∫
0

n(κ)4πκ2dκ

/(
V
h3

4π
3
(h̄kn)3κ3max

)
where we conservatively use for the effective coordinate-space
volume, V = (4π/3)R3

TF, where RTF is the Thomas–Fermi radius
of the initial weakly interacting BEC. For the higher 〈n〉 data,
where the effects of the initial size are smaller, choosing for
example κmax = 0.26 gives 23% of the atoms and 〈ρocc〉 = 7.1 for
t = 170 µs= 3tn. The fact that this lower limit for the density in
phase space is much larger than 1 for a significant fraction of the
atoms indicates that the gas is degenerate.

In addition to considering the saturated n(κ), we present the ob-
served timescale for the dynamics in Figs 4 and 5. As can be seen in
Fig. 2, the evolution of the momentum distribution is not uniform,
with the higher momentum population saturating earlier. In Fig. 4,
we plot the number of atoms, 1N , within a specific momentum
range as a function of t , for two different ranges of momentum κ

and for two different initial densities 〈n〉. In each case, we find that

3

2

  /
t n

1

0
0 1 2 3

κ

τ

Figure 5 | The time constant associated with the emergence of signal at
high momentum plotted as a function of scaled momentum, κ. Data for
〈n〉= 5.5(3)× 1012 cm−3 are shown with filled circles; data for
〈n〉= 1.6(1)× 1012 cm−3 are shown with open circles. The horizontal error
bars show the spread in κ used to extract each τ ; the vertical bars
correspond to 1 s.d.

the number of atoms within the specific momentum range grows
and then saturates. We find that the timescale for this saturation
increases for smaller κ , and for smaller 〈n〉. We fit the data for each
different κ range to an exponential and extract a time constant τ .

To look for universality in the timescales, we normalize τ by
tn, where tn is 57 and 130 µs for the data at higher and lower 〈n〉,
respectively. Plotting the normalized τ/tn versus κ , we find that
the momentum-dependent dynamics at our two different densities
are consistent (Fig. 5). We conclude that the timescale for n(κ)
dynamics is universal in that it depends only on the density, or
interparticle spacing. Themomentum dependence of the timescales
remains to be understood, although it is perhaps not unexpected
that higher momenta dynamics saturate faster.

In conclusion, we have projected initially weakly interacting
BECs onto unitarity-limited interactions and measured the result-
ingmomentum-space dynamics. Three key findings of this work are
as follows: the momentum distribution of the unitary gas evolves
and then saturates on a timescale that is significantly shorter than
the timescale for three-body loss; both the shape of the saturated
momentum distribution and the timescale for the dynamics seem
to be universal; the low-momentum part of the momentum distri-
bution indicates that the density of atoms in phase space exceeds 1,
and, hence, the gas is degenerate. These findings support the conclu-
sion that the gas reaches a locally equilibrated, metastable state and
open the door for experimental investigation of a degenerate unitary
Bose gas—something thatwas previously considered inaccessible.

This work raises some interesting questions: to what extent
can the gas locally be described by a temperature, and is this
temperature below the critical temperature for a Bose gas with
unitarity-limited short-range interactions? What is this critical
temperature in units of the critical temperature for an ideal Bose
gas? At high momentum, what is expected for the contact, and
does a high-momentum tail whose amplitude corresponds to the
contact exist beyond the range of our data, or below our detection
limit? Finally, what does the observed momentum dependence of
the dynamics tell us about the evolution of the system at unitarity?

Methods
Magnetic-field control. To rapidly change the magnetic field, we use an additional
pair of coils, each with ten turns and a diameter of 1.0, 2.8 cm apart. The step
response of the system has a 10–90% rise time of 2.1 µs; thus, the 5 µs magnetic-field
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sweep used in the measurements is below the maximum bandwidth of the system.
We characterize and pre-correct for induced currents from mutual inductances
between these coils and the magnetic trap coils as well as eddy currents in
surrounding conductors. Taking into account roughly equal contributions from
uncertainty in our magnetic field and the uncertainty in the Feshbach resonance
location B0 (ref. 31), we estimate that our experiments are within ±50mG of the
Feshbach resonance, which corresponds to |a|>95,000a0.

Loss rate at unitarity. Using the initial loss rate implied by the exponential fit to
the data shown in Fig. 1, and using dN/dt =−L3

∫
n(r)3d3r, we extract L3= 5(1)×

10−23 cm6 s−1. Unitarity-limited three-body loss rates for a non-degenerate Bose
gas have recently been investigated24. Using Eqn. 5 from ref. 24 and the Efimov
resonance width, η, from ref. 11, the predicted L3 for 85Rb atoms at a temperature
of 10 nK is 3×10−20 cm6 s−1, which is two and a half orders of magnitude larger
than what we measure. On the other hand, after the jump to unitarity, universality
suggests that we should use an energy scale that is determined by the interparticle
spacing. Replacing kBT with En, where kB is the Boltzmann constant, gives
an estimate for L3 of 1.7×10−22 cm6 s−1, which is within a factor of 4 of our
measurement. For the low 〈n〉 data, L3 is a factor of 6.2(5) larger than for the high 〈n〉
data.UsingEn for the twodifferent densities, wewould expect this ratio to be 5.2(6).

Sample volume. The spherical aspect ratio of the trap was chosen to maximize the
time before the cloud radius changes significantly.A priori, it is not obvious whether
the BEC will expand or collapse after the jump to unitarity. With in situ images of
the gas at unitarity, we find that the cloud volume remains unchanged to within our
measurement precision for∼500 µs and then slowly increases. For experiments that
require a lower initial coordinate space density, we begin the experimental cycle by
changing a to 400 a0 for a fraction of a trap cycle, which transiently increases the
cloud size and reduces the spatial density 〈n〉 to 1.6(1)×1012 cm−3.

Momentum distributions. For the time-of-flight expansion, the 10Hz spherical
magnetic trap is turned off over 2ms, while keeping themagnitude of the total mag-
netic field constant. As the trap turns off in a time that is much shorter than the trap
period, it has a negligible effect on the momenta of the atoms. We image the atoms
using a 5 µs imaging pulse. The direction of the imaging beamand themagnetic-field
direction are shown in Fig. 1b. For each hold time at unitarity, we repeat the experi-
ment four times for each of three different times of flight, texp: 25, 13 and 7ms. Each
image is azimuthally averaged, and the curves for the same time of flight are averaged
together. We then combine the averaged curves into a single momentum distri-
bution, ñ(k̃), using the largest texp data at the smallest k̃ and the smallest texp data at
the largest k̃. This minimizes the initial-size effects at small k̃, while improving the
signal-to-noise ratio at larger k̃. In combining the curves, we enforce agreement in
the overlap regions by applying a multiplicative factor to the data for shorter texp.
This additional scaling factor, which ranges from 1.07 to 1.26 for the texp = 13ms
data and from 1.5 to 2.1 for the texp=7ms data, reflects systematic uncertainties that
become increasingly important as ñ(k̃) decreases by orders ofmagnitudes.

At small k̃, the measured ñ(k̃) is distorted by the initial size of the BEC (the
Thomas–Fermi radius is 16 µm for the higher 〈n〉 data and 22 µm for the lower
〈n〉 data) and by our imaging resolution (characterized by a Gaussian width of
approximately 6 µm). The grey regions in Fig. 2, and the corresponding regions
where the data are shown as dashed lines in Fig. 3, are bounded by a radius of 58 µm
in the expanded cloud image. In the absence of the jump to unitarity, the BEC with
〈n〉= 5.5(3)×1012 cm−3 has 97% of the atoms within this radius after an expansion
time of 25ms. We note that all the effects discussed here cause low-momentum
atoms to appear at larger radii than one would expect from the product of velocity
and texp. Therefore, integrating the signal up to a particular momentum gives a
lower limit to the number of atoms that have momenta below that value. We use
this fact in extracting a lower bound for the density in phase space.
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